Cargando…

Theoretical Study for High-Energy-Density Compounds Derived from Cyclophosphazene. IV. DFT Studies on 1,1-Diamino-3,3,5,5,7,7-hexaazidocyclotetraphosphazene and Its Isomers

In the present study, a theoretical study of 1,1-diaminohexaazidocyclotetraphophazene (DAHA) and its isomers has been performed, using quantum computational density functional theory (B3LYP and B3PW91 methods) with 6-31G* and 6-31G** basis sets implemented in Gaussian 03 program suite. Molecular str...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jianguo, Zheng, Huihui, Zhang, Tonglai, Wu, Man
Formato: Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741615/
https://www.ncbi.nlm.nih.gov/pubmed/19756156
http://dx.doi.org/10.3390/ijms10083502
Descripción
Sumario:In the present study, a theoretical study of 1,1-diaminohexaazidocyclotetraphophazene (DAHA) and its isomers has been performed, using quantum computational density functional theory (B3LYP and B3PW91 methods) with 6-31G* and 6-31G** basis sets implemented in Gaussian 03 program suite. Molecular structure and bonding, vibrational frequencies, Milliken population analysis, and natural bond orbit (NBO) have been studied. The heats of formation from atomization energies have also been calculated based on the optimized geometry. The obtained heats of formation data are compared with their homologous cyclophosphazene in order to demonstrate the accuracy of the methods, which indicate that the studied compounds might be potentially used as high energetic materials. In addition, the relative stability of five isomers have been deduced based on the total energy and the gap of frontier orbital energies.