Cargando…
Predicting Positive p53 Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learning
Many protein engineering problems involve finding mutations that produce proteins with a particular function. Computational active learning is an attractive approach to discover desired biological activities. Traditional active learning techniques have been optimized to iteratively improve classifie...
Autores principales: | Danziger, Samuel A., Baronio, Roberta, Ho, Lydia, Hall, Linda, Salmon, Kirsty, Hatfield, G. Wesley, Kaiser, Peter, Lathrop, Richard H. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742196/ https://www.ncbi.nlm.nih.gov/pubmed/19756158 http://dx.doi.org/10.1371/journal.pcbi.1000498 |
Ejemplares similares
-
All-codon scanning identifies p53 cancer rescue mutations
por: Baronio, Roberta, et al.
Publicado: (2010) -
Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants
por: Demir, Özlem, et al.
Publicado: (2011) -
Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53
por: Wassman, Christopher D., et al.
Publicado: (2013) -
CHOPER Filters Enable Rare Mutation Detection in Complex Mutagenesis Populations by Next-Generation Sequencing
por: Salehi, Faezeh, et al.
Publicado: (2015) -
MIPS: analysis and annotation of genome information in 2007
por: Mewes, H. W., et al.
Publicado: (2008)