Cargando…
An Evaluation of Cellular Neural Networks for the Automatic Identification of Cephalometric Landmarks on Digital Images
Several efforts have been made to completely automate cephalometric analysis by automatic landmark search. However, accuracy obtained was worse than manual identification in every study. The analogue-to-digital conversion of X-ray has been claimed to be the main problem. Therefore the aim of this in...
Autores principales: | Leonardi, Rosalia, Giordano, Daniela, Maiorana, Francesco |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742650/ https://www.ncbi.nlm.nih.gov/pubmed/19753320 http://dx.doi.org/10.1155/2009/717102 |
Ejemplares similares
-
Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
A fully deep learning model for the automatic identification of cephalometric landmarks
por: Kim, Young Hyun, et al.
Publicado: (2021) -
The Effect of Emboss Enhancement on Reliability of Landmark Identification in Digital Lateral Cephalometric Images
por: Nikneshan, Sima, et al.
Publicado: (2015) -
Automatic recognition of cephalometric landmarks via multi-scale sampling strategy
por: Zhao, Congyi, et al.
Publicado: (2023) -
Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification?
por: Ye, Huayu, et al.
Publicado: (2023)