Cargando…
Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion
BACKGROUND: While premature suture fusion, or craniosynostosis, is a relatively common condition, the cause is often unknown. Estrogens are associated with growth plate fusion of endochondral bones. In the following study, we explore the previously unknown significance of estrogen/estrogen receptor...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743190/ https://www.ncbi.nlm.nih.gov/pubmed/19771170 http://dx.doi.org/10.1371/journal.pone.0007120 |
_version_ | 1782171853043793920 |
---|---|
author | James, Aaron W. Theologis, Alexander A. Brugmann, Samantha A. Xu, Yue Carre, Antoine L. Leucht, Philipp Hamilton, Katherine Korach, Kenneth S. Longaker, Michael T. |
author_facet | James, Aaron W. Theologis, Alexander A. Brugmann, Samantha A. Xu, Yue Carre, Antoine L. Leucht, Philipp Hamilton, Katherine Korach, Kenneth S. Longaker, Michael T. |
author_sort | James, Aaron W. |
collection | PubMed |
description | BACKGROUND: While premature suture fusion, or craniosynostosis, is a relatively common condition, the cause is often unknown. Estrogens are associated with growth plate fusion of endochondral bones. In the following study, we explore the previously unknown significance of estrogen/estrogen receptor signaling in cranial suture biology. METHODOLOGY/PRINCIPAL FINDINGS: Firstly, estrogen receptor (ER) expression was examined in physiologically fusing (posterofrontal) and patent (sagittal) mouse cranial sutures by quantitative RT-PCR. Next, the cranial suture phenotype of ER alpha and ER beta knockout (αERKO, βERKO) mice was studied. Subsequently, mouse suture-derived mesenchymal cells (SMCs) were isolated; the effects of 17-β estradiol or the estrogen antagonist Fulvestrant on gene expression, osteogenic and chondrogenic differentiation were examined in vitro. Finally, in vivo experiments were performed in which Fulvestrant was administered subcutaneously to the mouse calvaria. Results showed that increased ERα but not ERβ transcript abundance temporally coincided with posterofrontal suture fusion. The αERKO but not βERKO mouse exhibited delayed posterofrontal suture fusion. In vitro, addition of 17-β estradiol enhanced both osteogenic and chondrogenic differentiation in suture-derived mesenchymal cells, effects reversible by Fulvestrant. Finally, in vivo application of Fulvestrant significantly diminished calvarial osteogenesis, inhibiting suture fusion. CONCLUSIONS/SIGNIFICANCE: Estrogen signaling through ERα but not ERβ is associated with and necessary for normal mouse posterofrontal suture fusion. In vitro studies suggest that estrogens may play a role in osteoblast and/or chondrocyte differentiation within the cranial suture complex. |
format | Text |
id | pubmed-2743190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27431902009-09-22 Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion James, Aaron W. Theologis, Alexander A. Brugmann, Samantha A. Xu, Yue Carre, Antoine L. Leucht, Philipp Hamilton, Katherine Korach, Kenneth S. Longaker, Michael T. PLoS One Research Article BACKGROUND: While premature suture fusion, or craniosynostosis, is a relatively common condition, the cause is often unknown. Estrogens are associated with growth plate fusion of endochondral bones. In the following study, we explore the previously unknown significance of estrogen/estrogen receptor signaling in cranial suture biology. METHODOLOGY/PRINCIPAL FINDINGS: Firstly, estrogen receptor (ER) expression was examined in physiologically fusing (posterofrontal) and patent (sagittal) mouse cranial sutures by quantitative RT-PCR. Next, the cranial suture phenotype of ER alpha and ER beta knockout (αERKO, βERKO) mice was studied. Subsequently, mouse suture-derived mesenchymal cells (SMCs) were isolated; the effects of 17-β estradiol or the estrogen antagonist Fulvestrant on gene expression, osteogenic and chondrogenic differentiation were examined in vitro. Finally, in vivo experiments were performed in which Fulvestrant was administered subcutaneously to the mouse calvaria. Results showed that increased ERα but not ERβ transcript abundance temporally coincided with posterofrontal suture fusion. The αERKO but not βERKO mouse exhibited delayed posterofrontal suture fusion. In vitro, addition of 17-β estradiol enhanced both osteogenic and chondrogenic differentiation in suture-derived mesenchymal cells, effects reversible by Fulvestrant. Finally, in vivo application of Fulvestrant significantly diminished calvarial osteogenesis, inhibiting suture fusion. CONCLUSIONS/SIGNIFICANCE: Estrogen signaling through ERα but not ERβ is associated with and necessary for normal mouse posterofrontal suture fusion. In vitro studies suggest that estrogens may play a role in osteoblast and/or chondrocyte differentiation within the cranial suture complex. Public Library of Science 2009-09-22 /pmc/articles/PMC2743190/ /pubmed/19771170 http://dx.doi.org/10.1371/journal.pone.0007120 Text en James et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article James, Aaron W. Theologis, Alexander A. Brugmann, Samantha A. Xu, Yue Carre, Antoine L. Leucht, Philipp Hamilton, Katherine Korach, Kenneth S. Longaker, Michael T. Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion |
title | Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion |
title_full | Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion |
title_fullStr | Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion |
title_full_unstemmed | Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion |
title_short | Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion |
title_sort | estrogen/estrogen receptor alpha signaling in mouse posterofrontal cranial suture fusion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743190/ https://www.ncbi.nlm.nih.gov/pubmed/19771170 http://dx.doi.org/10.1371/journal.pone.0007120 |
work_keys_str_mv | AT jamesaaronw estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT theologisalexandera estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT brugmannsamanthaa estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT xuyue estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT carreantoinel estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT leuchtphilipp estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT hamiltonkatherine estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT korachkenneths estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion AT longakermichaelt estrogenestrogenreceptoralphasignalinginmouseposterofrontalcranialsuturefusion |