Cargando…
Analysis of Allogenicity of Mesenchymal Stem Cells in Engraftment and Wound Healing in Mice
Studies have shown that allogeneic (allo-) bone marrow derived mesenchymal stem cells (BM-MSCs) may enhance tissue repair/regeneration. However, recent studies suggest that immune rejection may occur to allo-MSCs leading to reduced engraftment. In this study, we compared allo-BM-MSCs with syngeneic...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743192/ https://www.ncbi.nlm.nih.gov/pubmed/19771171 http://dx.doi.org/10.1371/journal.pone.0007119 |
Sumario: | Studies have shown that allogeneic (allo-) bone marrow derived mesenchymal stem cells (BM-MSCs) may enhance tissue repair/regeneration. However, recent studies suggest that immune rejection may occur to allo-MSCs leading to reduced engraftment. In this study, we compared allo-BM-MSCs with syngeneic BM-MSCs or allo-fibroblasts in engraftment and effect in wound healing. Equal numbers of GFP-expressing allo-BM-MSCs, syngeneic BM-MSCs or allo-fibroblasts were implanted into excisional wounds in GFP-negative mice. Quantification of GFP-expressing cells in wounds at 7, 14 and 28 days indicated similar amounts of allogeneic or syngeneic BM-MSCs but significantly reduced amounts of allo-fibroblasts. With healing progression, decreasing amounts of allogeneic and syngeneic BM-MSCs were found in the wound; however, the reduction was more evident (2 fold) in allo-fibroblasts. Similar effects in enhancing wound closure were found in allogeneic and syngeneic BM-MSCs but not in allo-fibroblasts. Histological analysis showed that allo-fibroblasts were largely confined to the injection sites while allo-BM-MSCs had migrated into the entire wound. Quantification of inflammatory cells in wounds showed that allo-fibroblast- but not allo-BM-MSC-treated wounds had significantly increased CD45(+) leukocytes, CD3(+) lymphocytes and CD8(+) T cells. Our study suggests that allogeneic BM-MSCs exhibit ignorable immunogenicity and are equally efficient as syngeneic BM-MSCs in engraftment and in enhancing wound healing. |
---|