Cargando…
Extracting biologically significant patterns from short time series gene expression data
BACKGROUND: Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult. RESULTS: We developed two new a...
Autores principales: | Tchagang, Alain B, Bui, Kevin V, McGinnis, Thomas, Benos, Panayiotis V |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743670/ https://www.ncbi.nlm.nih.gov/pubmed/19695084 http://dx.doi.org/10.1186/1471-2105-10-255 |
Ejemplares similares
-
Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm
por: Tchagang, Alain B, et al.
Publicado: (2012) -
GOAL: A software tool for assessing biological significance of genes groups
por: Tchagang, Alain B, et al.
Publicado: (2010) -
Statistical Inference Methods for Sparse Biological Time Series Data
por: Ndukum, Juliet, et al.
Publicado: (2011) -
Statistical significance approximation for local similarity analysis of dependent time series data
por: Zhang, Fang, et al.
Publicado: (2019) -
Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of Machine Learning Techniques
por: Gurchiek, Reed D., et al.
Publicado: (2019)