Cargando…
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering
BACKGROUND: Uncovering subtypes of disease from microarray samples has important clinical implications such as survival time and sensitivity of individual patients to specific therapies. Unsupervised clustering methods have been used to classify this type of data. However, most existing methods focu...
Autores principales: | Kim, Eun-Youn, Kim, Seon-Young, Ashlock, Daniel, Nam, Dougu |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743671/ https://www.ncbi.nlm.nih.gov/pubmed/19698124 http://dx.doi.org/10.1186/1471-2105-10-260 |
Ejemplares similares
-
GScluster: network-weighted gene-set clustering analysis
por: Yoon, Sora, et al.
Publicado: (2019) -
Weighted K-means support vector machine for cancer prediction
por: Kim, SungHwan
Publicado: (2016) -
Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data
por: Wang, Junbai, et al.
Publicado: (2003) -
Allelotyping of pooled DNA with 250 K SNP microarrays
por: Wilkening, Stefan, et al.
Publicado: (2007) -
The comparison of automated clustering algorithms for resampling representative conformer ensembles with RMSD matrix
por: Kim, Hyoungrae, et al.
Publicado: (2017)