Cargando…

SOCS2 Influences LPS Induced Human Monocyte-Derived Dendritic Cell Maturation

Dendritic cells (DCs) are highly specific antigen presenting cells, which link innate and adaptive immune responses and participate in protecting hosts from invading pathogens. DCs can be generated in vitro by culturing human monocytes with GM-CSF and IL-4 followed by LPS induced DC maturation. We s...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Jin, Winqvist, Ola, Flores-Morales, Amilcar, Wikström, Ann-Charlotte, Norstedt, Gunnar
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744869/
https://www.ncbi.nlm.nih.gov/pubmed/19779605
http://dx.doi.org/10.1371/journal.pone.0007178
Descripción
Sumario:Dendritic cells (DCs) are highly specific antigen presenting cells, which link innate and adaptive immune responses and participate in protecting hosts from invading pathogens. DCs can be generated in vitro by culturing human monocytes with GM-CSF and IL-4 followed by LPS induced DC maturation. We set out to study the suppressor of cytokine signaling (SOCS) proteins during maturation and activation of human monocyte-derived DCs from peripheral blood in vitro. We found that the expression of SOCS2 mRNA and protein is dramatically up-regulated during DC maturation. Silencing of SOCS2 using siRNA, inhibited DC maturation as evidenced by a decreased expression of maturation markers such as CD83, co-stimulatory molecules CD40, CD86 and HLA-DR. Furthermore, silencing of SOCS2 decreased LPS induced activation of MAP kinases (SAKP/JNK, p38, ERK), IRF3, decreased the translocation of the NF-κB transcription factor and reduced downstream gene mRNA expression. These results suggest a role for SOCS2 in the MyD88-dependent and -independent TLR4 signaling pathways. In conclusion, our results demonstrate that SOCS2 is required for appropriate TLR4 signaling in maturating human DCs via both the MyD88-dependent and -independent signaling pathway.