Cargando…
Structure-based substrate screening for an enzyme
BACKGROUND: Nowadays, more and more novel enzymes can be easily found in the whole enzyme pool with the rapid development of genetic operation. However, experimental work for substrate screening of a new enzyme is laborious, time consuming and costly. On the other hand, many computational methods ha...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745390/ https://www.ncbi.nlm.nih.gov/pubmed/19695105 http://dx.doi.org/10.1186/1471-2105-10-257 |
_version_ | 1782171960201969664 |
---|---|
author | Xu, Tao Zhang, Lujia Wang, Xuedong Wei, Dongzhi Li, Tianbi |
author_facet | Xu, Tao Zhang, Lujia Wang, Xuedong Wei, Dongzhi Li, Tianbi |
author_sort | Xu, Tao |
collection | PubMed |
description | BACKGROUND: Nowadays, more and more novel enzymes can be easily found in the whole enzyme pool with the rapid development of genetic operation. However, experimental work for substrate screening of a new enzyme is laborious, time consuming and costly. On the other hand, many computational methods have been widely used in lead screening of drug design. Seeing that the ligand-target protein system in drug design and the substrate-enzyme system in enzyme applications share the similar molecular recognition mechanism, we aim to fulfill the goal of substrate screening by in silico means in the present study. RESULTS: A computer-aided substrate screening (CASS) system which was based on the enzyme structure was designed and employed successfully to help screen substrates of Candida antarctica lipase B (CALB). In this system, restricted molecular docking which was derived from the mechanism of the enzyme was applied to predict the energetically favorable poses of substrate-enzyme complexes. Thereafter, substrate conformation, distance between the oxygen atom of the alcohol part of the ester (in some compounds, this oxygen atom was replaced by nitrogen atom of the amine part of acid amine or sulfur atom of the thioester) and the hydrogen atom of imidazole of His224, distance between the carbon atom of the carbonyl group of the compound and the oxygen atom of hydroxyl group of Ser105 were used sequentially as the criteria to screen the binding poses. 223 out of 233 compounds were identified correctly for the enzyme by this screening system. Such high accuracy guaranteed the feasibility and reliability of the CASS system. CONCLUSION: The idea of computer-aided substrate screening is a creative combination of computational skills and enzymology. Although the case studied in this paper is tentative, high accuracy of the CASS system sheds light on the field of computer-aided substrate screening. |
format | Text |
id | pubmed-2745390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27453902009-09-17 Structure-based substrate screening for an enzyme Xu, Tao Zhang, Lujia Wang, Xuedong Wei, Dongzhi Li, Tianbi BMC Bioinformatics Methodology Article BACKGROUND: Nowadays, more and more novel enzymes can be easily found in the whole enzyme pool with the rapid development of genetic operation. However, experimental work for substrate screening of a new enzyme is laborious, time consuming and costly. On the other hand, many computational methods have been widely used in lead screening of drug design. Seeing that the ligand-target protein system in drug design and the substrate-enzyme system in enzyme applications share the similar molecular recognition mechanism, we aim to fulfill the goal of substrate screening by in silico means in the present study. RESULTS: A computer-aided substrate screening (CASS) system which was based on the enzyme structure was designed and employed successfully to help screen substrates of Candida antarctica lipase B (CALB). In this system, restricted molecular docking which was derived from the mechanism of the enzyme was applied to predict the energetically favorable poses of substrate-enzyme complexes. Thereafter, substrate conformation, distance between the oxygen atom of the alcohol part of the ester (in some compounds, this oxygen atom was replaced by nitrogen atom of the amine part of acid amine or sulfur atom of the thioester) and the hydrogen atom of imidazole of His224, distance between the carbon atom of the carbonyl group of the compound and the oxygen atom of hydroxyl group of Ser105 were used sequentially as the criteria to screen the binding poses. 223 out of 233 compounds were identified correctly for the enzyme by this screening system. Such high accuracy guaranteed the feasibility and reliability of the CASS system. CONCLUSION: The idea of computer-aided substrate screening is a creative combination of computational skills and enzymology. Although the case studied in this paper is tentative, high accuracy of the CASS system sheds light on the field of computer-aided substrate screening. BioMed Central 2009-08-21 /pmc/articles/PMC2745390/ /pubmed/19695105 http://dx.doi.org/10.1186/1471-2105-10-257 Text en Copyright © 2009 Xu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Xu, Tao Zhang, Lujia Wang, Xuedong Wei, Dongzhi Li, Tianbi Structure-based substrate screening for an enzyme |
title | Structure-based substrate screening for an enzyme |
title_full | Structure-based substrate screening for an enzyme |
title_fullStr | Structure-based substrate screening for an enzyme |
title_full_unstemmed | Structure-based substrate screening for an enzyme |
title_short | Structure-based substrate screening for an enzyme |
title_sort | structure-based substrate screening for an enzyme |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745390/ https://www.ncbi.nlm.nih.gov/pubmed/19695105 http://dx.doi.org/10.1186/1471-2105-10-257 |
work_keys_str_mv | AT xutao structurebasedsubstratescreeningforanenzyme AT zhanglujia structurebasedsubstratescreeningforanenzyme AT wangxuedong structurebasedsubstratescreeningforanenzyme AT weidongzhi structurebasedsubstratescreeningforanenzyme AT litianbi structurebasedsubstratescreeningforanenzyme |