Cargando…
Knowledge-based variable selection for learning rules from proteomic data
BACKGROUND: The incorporation of biological knowledge can enhance the analysis of biomedical data. We present a novel method that uses a proteomic knowledge base to enhance the performance of a rule-learning algorithm in identifying putative biomarkers of disease from high-dimensional proteomic mass...
Autores principales: | Lustgarten, Jonathan L, Visweswaran, Shyam, Bowser, Robert P, Hogan, William R, Gopalakrishnan, Vanathi |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745687/ https://www.ncbi.nlm.nih.gov/pubmed/19761570 http://dx.doi.org/10.1186/1471-2105-10-S9-S16 |
Ejemplares similares
-
Learning Parsimonious Classification Rules from Gene Expression Data Using Bayesian Networks with Local Structure
por: Lustgarten, Jonathan Lyle, et al.
Publicado: (2017) -
Selective Model Averaging with Bayesian Rule Learning for Predictive Biomedicine
por: Balasubramanian, Jeya B., et al.
Publicado: (2014) -
Application of an efficient Bayesian discretization method to biomedical data
por: Lustgarten, Jonathan L, et al.
Publicado: (2011) -
Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
por: Ogoe, Henry A., et al.
Publicado: (2015) -
Tunable structure priors for Bayesian rule learning for knowledge integrated biomarker discovery
por: Balasubramanian, Jeya Balaji, et al.
Publicado: (2018)