Cargando…

A systems biology approach to the identification and analysis of transcriptional regulatory networks in osteocytes

BACKGROUND: The osteocyte is a type of cell that appears to be one of the key endocrine regulators of bone metabolism and a key responder to initiate bone formation and remodeling. Identifying the regulatory networks in osteocytes may lead to new therapies for osteoporosis and loss of bone. RESULTS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Dean, Angela K, Harris, Stephen E, Kalajzic, Ivo, Ruan, Jianhua
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745692/
https://www.ncbi.nlm.nih.gov/pubmed/19761575
http://dx.doi.org/10.1186/1471-2105-10-S9-S5
Descripción
Sumario:BACKGROUND: The osteocyte is a type of cell that appears to be one of the key endocrine regulators of bone metabolism and a key responder to initiate bone formation and remodeling. Identifying the regulatory networks in osteocytes may lead to new therapies for osteoporosis and loss of bone. RESULTS: Using microarray, we identified 269 genes over-expressed in osteocyte, many of which have known functions in bone and muscle differentiation and contractility. We determined the evolutionarily conserved and enriched TF binding sites in the 5 kb promoter regions of these genes. Using this data, a transcriptional regulatory network was constructed and subsequently partitioned to identify cis-regulatory modules. CONCLUSION: Our results show that many osteocyte-specific genes, including two well-known osteocyte markers DMP1 and Sost, have highly conserved clustering of muscle-related cis-regulatory modules, thus supporting the concept that a muscle-related gene network is important in osteocyte biology and may play a role in contractility and dynamic movements of the osteocyte.