Cargando…

Small Family with Key Contacts: Par14 and Par17 Parvulin Proteins, Relatives of Pin1, Now Emerge in Biomedical Research

The parvulin-type peptidyl-prolyl cis/trans isomerase Pin1 is subject of intense biochemical and clinical research as it seems to be involved in the pathogenesis of certain cancers and protein folding illnesses like Alzheimer’s and Parkinson’s disease. In addition to Pin1, the human genome only cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Mueller, Jonathan W, Bayer, Peter
Formato: Texto
Lenguaje:English
Publicado: Libertas Academica 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746571/
https://www.ncbi.nlm.nih.gov/pubmed/19787094
Descripción
Sumario:The parvulin-type peptidyl-prolyl cis/trans isomerase Pin1 is subject of intense biochemical and clinical research as it seems to be involved in the pathogenesis of certain cancers and protein folding illnesses like Alzheimer’s and Parkinson’s disease. In addition to Pin1, the human genome only contains a single other parvulin locus encoding two protein species—Par14 and Par17. Much less is known about these enzymes although their sequences are highly conserved in all metazoans. Parvulin has been proposed to function as Pin1 complementing enzyme in cell cycle regulation and in chromatin remodelling. Pharmaceutical modulation of Par14 might therefore have benefits for certain types of cancer. Moreover, the Par17 protein that has been shown to be confined to anthropoid primate species only might provide a deeper understanding for human-specific brain development. This review aims at stimulating further research on Par14 and Par17 that are overlooked drug targets in the shadow of an overwhelming plethora of Pin1 literature by summarising all current knowledge on these parvulin proteins.