Cargando…

A Model for Protein Sequence Evolution Based on Selective Pressure for Protein Stability: Application to Hemoglobins

Negative selection against protein instability is a central influence on evolution of proteins. Protein stability is maintained over evolution despite changes in underlying sequences. An empirical all-site stability-based model of evolution was developed to focus on the selection of residues arising...

Descripción completa

Detalles Bibliográficos
Autor principal: Marsh, Lorraine
Formato: Texto
Lenguaje:English
Publicado: Libertas Academica 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747123/
https://www.ncbi.nlm.nih.gov/pubmed/19812731
Descripción
Sumario:Negative selection against protein instability is a central influence on evolution of proteins. Protein stability is maintained over evolution despite changes in underlying sequences. An empirical all-site stability-based model of evolution was developed to focus on the selection of residues arising from their contributions to protein stability. In this model, site rates could vary. A structure-based method was used to predict stationary frequencies of hemoglobin residues based on their propensity to promote protein stability at a site. Sites with destabilizing residues were shown to change more rapidly in hemoglobins than sites with stabilizing residues. For diverse proteins the results were consistent with stability-based selection. Maximum likelihood studies with hemoglobins supported the stability-based model over simple Poisson-based methods. These observations are consistent with suggestions that purifying selection to maintain protein structural stability plays a dominant role in protein evolution.