Cargando…
Fetal Programming of Adult Glucose Homeostasis in Mice
BACKGROUND: Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucos...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748646/ https://www.ncbi.nlm.nih.gov/pubmed/19789640 http://dx.doi.org/10.1371/journal.pone.0007281 |
_version_ | 1782172138582573056 |
---|---|
author | Cederroth, Christopher R. Nef, Serge |
author_facet | Cederroth, Christopher R. Nef, Serge |
author_sort | Cederroth, Christopher R. |
collection | PubMed |
description | BACKGROUND: Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes. OBJECTIVES: The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters. METHODS: Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system. RESULTS: Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density. CONCLUSION: Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain. |
format | Text |
id | pubmed-2748646 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27486462009-09-30 Fetal Programming of Adult Glucose Homeostasis in Mice Cederroth, Christopher R. Nef, Serge PLoS One Research Article BACKGROUND: Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes. OBJECTIVES: The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters. METHODS: Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system. RESULTS: Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density. CONCLUSION: Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain. Public Library of Science 2009-09-30 /pmc/articles/PMC2748646/ /pubmed/19789640 http://dx.doi.org/10.1371/journal.pone.0007281 Text en Cederroth, Nef. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cederroth, Christopher R. Nef, Serge Fetal Programming of Adult Glucose Homeostasis in Mice |
title | Fetal Programming of Adult Glucose Homeostasis in Mice |
title_full | Fetal Programming of Adult Glucose Homeostasis in Mice |
title_fullStr | Fetal Programming of Adult Glucose Homeostasis in Mice |
title_full_unstemmed | Fetal Programming of Adult Glucose Homeostasis in Mice |
title_short | Fetal Programming of Adult Glucose Homeostasis in Mice |
title_sort | fetal programming of adult glucose homeostasis in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748646/ https://www.ncbi.nlm.nih.gov/pubmed/19789640 http://dx.doi.org/10.1371/journal.pone.0007281 |
work_keys_str_mv | AT cederrothchristopherr fetalprogrammingofadultglucosehomeostasisinmice AT nefserge fetalprogrammingofadultglucosehomeostasisinmice |