Cargando…

Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes

[Image: see text] Nanoparticles, including multiwalled carbon nanotubes (MWNTs), strongly absorb near-infrared (nIR) radiation and efficiently convert absorbed energy to released heat which can be used for localized hyperthermia applications. We demonstrate for the first time that DNA-encasement inc...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghosh, Supratim, Dutta, Samrat, Gomes, Evan, Carroll, David, D’Agostino, Ralph, Olson, John, Guthold, Martin, Gmeiner, William H.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2009
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748720/
https://www.ncbi.nlm.nih.gov/pubmed/19655728
http://dx.doi.org/10.1021/nn900368b
Descripción
Sumario:[Image: see text] Nanoparticles, including multiwalled carbon nanotubes (MWNTs), strongly absorb near-infrared (nIR) radiation and efficiently convert absorbed energy to released heat which can be used for localized hyperthermia applications. We demonstrate for the first time that DNA-encasement increases heat emission following nIR irradiation of MWNTs, and DNA-encased MWNTs can be used to safely eradicate a tumor mass in vivo. Upon irradiation of DNA-encased MWNTs, heat is generated with a linear dependence on irradiation time and laser power. DNA-encasement resulted in a 3-fold reduction in the concentration of MWNTs required to impart a 10 °C temperature increase in bulk solution temperature. A single treatment consisting of intratumoral injection of MWNTs (100 μL of a 500 μg/mL solution) followed by laser irradiation at 1064 nm, 2.5 W/cm(2) completely eradicated PC3 xenograft tumors in 8/8 (100%) of nude mice. Tumors that received only MWNT injection or laser irradiation showed growth rates indistinguishable from nontreated control tumors. Nonmalignant tissues displayed no long-term damage from treatment. The results demonstrate that DNA-encased MWNTs are more efficient at converting nIR irradiation into heat compared to nonencased MWNTs and that DNA-encased MWNTs can be used safely and effectively for the selective thermal ablation of malignant tissue in vivo.