Cargando…

Sensory transformations and the use of multiple reference frames for reach planning

The sensory signals that drive movement planning arrive in a variety of “reference frames”, so integrating or comparing them requires sensory transformations. We propose a model where the statistical properties of sensory signals and their transformations determine how these signals are used. This m...

Descripción completa

Detalles Bibliográficos
Autores principales: McGuire, Leah M.M., Sabes, Philip N.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749235/
https://www.ncbi.nlm.nih.gov/pubmed/19597495
http://dx.doi.org/10.1038/nn.2357
Descripción
Sumario:The sensory signals that drive movement planning arrive in a variety of “reference frames”, so integrating or comparing them requires sensory transformations. We propose a model where the statistical properties of sensory signals and their transformations determine how these signals are used. This model captures the patterns of gaze-dependent errors found in our human psychophysics experiment when the sensory signals available for reach planning are varied. These results challenge two widely held ideas: error patterns directly reflect the reference frame of the underlying neural representation, and it is preferable to use a single common reference frame for movement planning. We show that gaze-dependent error patterns, often cited as evidence for retinotopic reach planning, can be explained by a transformation bias and are not exclusively linked to retinotopic representations. Further, the presence of multiple reference frames allows for optimal use of available sensory information and explains task-dependent reweighting of sensory signals.