Cargando…
Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects
BACKGROUND: Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood. METHODS: We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antips...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749837/ https://www.ncbi.nlm.nih.gov/pubmed/19758435 http://dx.doi.org/10.1186/1471-244X-9-57 |
_version_ | 1782172190946361344 |
---|---|
author | Choi, Kwang H Higgs, Brandon W Weis, Serge Song, Jonathan Llenos, Ida C Dulay, Jeannette R Yolken, Robert H Webster, Maree J |
author_facet | Choi, Kwang H Higgs, Brandon W Weis, Serge Song, Jonathan Llenos, Ida C Dulay, Jeannette R Yolken, Robert H Webster, Maree J |
author_sort | Choi, Kwang H |
collection | PubMed |
description | BACKGROUND: Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood. METHODS: We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone. RESULTS: Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients. CONCLUSION: Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles. |
format | Text |
id | pubmed-2749837 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27498372009-09-24 Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects Choi, Kwang H Higgs, Brandon W Weis, Serge Song, Jonathan Llenos, Ida C Dulay, Jeannette R Yolken, Robert H Webster, Maree J BMC Psychiatry Research Article BACKGROUND: Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood. METHODS: We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone. RESULTS: Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients. CONCLUSION: Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles. BioMed Central 2009-09-16 /pmc/articles/PMC2749837/ /pubmed/19758435 http://dx.doi.org/10.1186/1471-244X-9-57 Text en Copyright © 2009 Choi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Choi, Kwang H Higgs, Brandon W Weis, Serge Song, Jonathan Llenos, Ida C Dulay, Jeannette R Yolken, Robert H Webster, Maree J Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects |
title | Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects |
title_full | Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects |
title_fullStr | Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects |
title_full_unstemmed | Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects |
title_short | Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects |
title_sort | effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749837/ https://www.ncbi.nlm.nih.gov/pubmed/19758435 http://dx.doi.org/10.1186/1471-244X-9-57 |
work_keys_str_mv | AT choikwangh effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects AT higgsbrandonw effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects AT weisserge effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects AT songjonathan effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects AT llenosidac effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects AT dulayjeannetter effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects AT yolkenroberth effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects AT webstermareej effectsoftypicalandatypicalantipsychoticdrugsongeneexpressionprofilesintheliverofschizophreniasubjects |