Cargando…

Allele-specific expression assays using Solexa

BACKGROUND: Allele-specific expression (ASE) assays can be used to identify cis, trans, and cis-by-trans regulatory variation. Understanding the source of expression variation has important implications for disease susceptibility, phenotypic diversity, and adaptation. While ASE is commonly measured...

Descripción completa

Detalles Bibliográficos
Autores principales: Main, Bradley J, Bickel, Ryan D, McIntyre, Lauren M, Graze, Rita M, Calabrese, Peter P, Nuzhdin, Sergey V
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749874/
https://www.ncbi.nlm.nih.gov/pubmed/19740431
http://dx.doi.org/10.1186/1471-2164-10-422
Descripción
Sumario:BACKGROUND: Allele-specific expression (ASE) assays can be used to identify cis, trans, and cis-by-trans regulatory variation. Understanding the source of expression variation has important implications for disease susceptibility, phenotypic diversity, and adaptation. While ASE is commonly measured via relative fluorescence at a SNP, next generation sequencing provides an opportunity to measure ASE in an accurate and high-throughput manner using read counts. RESULTS: We introduce a Solexa-based method to perform large numbers of ASE assays using only a single lane of a Solexa flowcell. In brief, transcripts of interest, which contain a known SNP, are PCR enriched and barcoded to enable multiplexing. Then high-throughput sequencing is used to estimate allele-specific expression using sequencing counts. To validate this method, we measured the allelic bias in a dilution series and found high correlations between measured and expected values (r>0.9, p < 0.001). We applied this method to a set of 5 genes in a Drosophila simulans parental mix, F1 and introgression and found that for these genes the majority of expression divergence can be explained by cis-regulatory variation. CONCLUSION: We present a new method with the capacity to measure ASE for large numbers of assays using as little as one lane of a Solexa flowcell. This will be a valuable technique for molecular and population genetic studies, as well as for verification of genome-wide data sets.