Cargando…
Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo
OBJECTIVE: Adipose inflammation plays a central role in obesity-related metabolic and cardiovascular complications. However, few human adipose-secreted proteins are known to mediate these processes. We hypothesized that microarray mRNA profiling of human adipose during evoked inflammation could iden...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750231/ https://www.ncbi.nlm.nih.gov/pubmed/19581417 http://dx.doi.org/10.2337/db09-0256 |
_version_ | 1782172233165176832 |
---|---|
author | Shah, Rachana Lu, Yun Hinkle, Christine C. McGillicuddy, Fiona C. Kim, Roy Hannenhalli, Sridhar Cappola, Thomas P. Heffron, Sean Wang, XingMei Mehta, Nehal N. Putt, Mary Reilly, Muredach P. |
author_facet | Shah, Rachana Lu, Yun Hinkle, Christine C. McGillicuddy, Fiona C. Kim, Roy Hannenhalli, Sridhar Cappola, Thomas P. Heffron, Sean Wang, XingMei Mehta, Nehal N. Putt, Mary Reilly, Muredach P. |
author_sort | Shah, Rachana |
collection | PubMed |
description | OBJECTIVE: Adipose inflammation plays a central role in obesity-related metabolic and cardiovascular complications. However, few human adipose-secreted proteins are known to mediate these processes. We hypothesized that microarray mRNA profiling of human adipose during evoked inflammation could identify novel adipocytokines. RESEARCH DESIGN AND METHODS: Healthy human volunteers (n = 14) were treated with intravenous endotoxin (3 ng/kg lipopolysaccharide [LPS]) and underwent subcutaneous adipose biopsies before and after LPS. On Affymetrix U133Plus 2.0 arrays, adipose mRNAs modulated >1.5-fold (with P < 0.00001) were selected. SignalP 3.0 and SecretomeP 2.0 identified genes predicted to encode secreted proteins. Of these, 86 candidates were chosen for validation in adipose from an independent human endotoxemia protocol (N = 7, with 0.6 ng/kg LPS) and for exploration of cellular origin in primary human adipocytes and macrophages in vitro. RESULTS: Microarray identified 776 adipose genes modulated by LPS; 298 were predicted to be secreted. Of detectable prioritized genes, 82 of 85 (96% [95% CI 90–99]) were upregulated (fold changes >1.0) during the lower-dose (LPS 0.6 ng/kg) validation study and 51 of 85 (59% [49–70]) were induced greater than 1.5-fold. Treatment of primary adipocytes with LPS and macrophage polarization to M1 proinflammatory phenotype increased expression by 1.5-fold for 58 and 73% of detectable genes, respectively. CONCLUSIONS: We demonstrate that evoked inflammation of human adipose in vivo modulated expression of multiple genes likely secreted by adipocytes and monocytes. These included established adipocytokines and chemokines implicated in recruitment and activation of lymphocytes, adhesion molecules, antioxidants, and several novel genes with unknown function. Such candidates may represent biomarkers and therapeutic targets for obesity-related complications. |
format | Text |
id | pubmed-2750231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-27502312010-10-01 Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo Shah, Rachana Lu, Yun Hinkle, Christine C. McGillicuddy, Fiona C. Kim, Roy Hannenhalli, Sridhar Cappola, Thomas P. Heffron, Sean Wang, XingMei Mehta, Nehal N. Putt, Mary Reilly, Muredach P. Diabetes Original Article OBJECTIVE: Adipose inflammation plays a central role in obesity-related metabolic and cardiovascular complications. However, few human adipose-secreted proteins are known to mediate these processes. We hypothesized that microarray mRNA profiling of human adipose during evoked inflammation could identify novel adipocytokines. RESEARCH DESIGN AND METHODS: Healthy human volunteers (n = 14) were treated with intravenous endotoxin (3 ng/kg lipopolysaccharide [LPS]) and underwent subcutaneous adipose biopsies before and after LPS. On Affymetrix U133Plus 2.0 arrays, adipose mRNAs modulated >1.5-fold (with P < 0.00001) were selected. SignalP 3.0 and SecretomeP 2.0 identified genes predicted to encode secreted proteins. Of these, 86 candidates were chosen for validation in adipose from an independent human endotoxemia protocol (N = 7, with 0.6 ng/kg LPS) and for exploration of cellular origin in primary human adipocytes and macrophages in vitro. RESULTS: Microarray identified 776 adipose genes modulated by LPS; 298 were predicted to be secreted. Of detectable prioritized genes, 82 of 85 (96% [95% CI 90–99]) were upregulated (fold changes >1.0) during the lower-dose (LPS 0.6 ng/kg) validation study and 51 of 85 (59% [49–70]) were induced greater than 1.5-fold. Treatment of primary adipocytes with LPS and macrophage polarization to M1 proinflammatory phenotype increased expression by 1.5-fold for 58 and 73% of detectable genes, respectively. CONCLUSIONS: We demonstrate that evoked inflammation of human adipose in vivo modulated expression of multiple genes likely secreted by adipocytes and monocytes. These included established adipocytokines and chemokines implicated in recruitment and activation of lymphocytes, adhesion molecules, antioxidants, and several novel genes with unknown function. Such candidates may represent biomarkers and therapeutic targets for obesity-related complications. American Diabetes Association 2009-10 2009-07-06 /pmc/articles/PMC2750231/ /pubmed/19581417 http://dx.doi.org/10.2337/db09-0256 Text en © 2009 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Original Article Shah, Rachana Lu, Yun Hinkle, Christine C. McGillicuddy, Fiona C. Kim, Roy Hannenhalli, Sridhar Cappola, Thomas P. Heffron, Sean Wang, XingMei Mehta, Nehal N. Putt, Mary Reilly, Muredach P. Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo |
title | Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo |
title_full | Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo |
title_fullStr | Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo |
title_full_unstemmed | Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo |
title_short | Gene Profiling of Human Adipose Tissue During Evoked Inflammation In Vivo |
title_sort | gene profiling of human adipose tissue during evoked inflammation in vivo |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750231/ https://www.ncbi.nlm.nih.gov/pubmed/19581417 http://dx.doi.org/10.2337/db09-0256 |
work_keys_str_mv | AT shahrachana geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT luyun geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT hinklechristinec geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT mcgillicuddyfionac geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT kimroy geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT hannenhallisridhar geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT cappolathomasp geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT heffronsean geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT wangxingmei geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT mehtanehaln geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT puttmary geneprofilingofhumanadiposetissueduringevokedinflammationinvivo AT reillymuredachp geneprofilingofhumanadiposetissueduringevokedinflammationinvivo |