Cargando…
New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis
BACKGROUND: The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine te...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751788/ https://www.ncbi.nlm.nih.gov/pubmed/19754951 http://dx.doi.org/10.1186/1471-2164-10-434 |
_version_ | 1782172262466584576 |
---|---|
author | Tingaud-Sequeira, Angèle Chauvigné, François Lozano, Juanjo Agulleiro, María J Asensio, Esther Cerdà, Joan |
author_facet | Tingaud-Sequeira, Angèle Chauvigné, François Lozano, Juanjo Agulleiro, María J Asensio, Esther Cerdà, Joan |
author_sort | Tingaud-Sequeira, Angèle |
collection | PubMed |
description | BACKGROUND: The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine teleosts that exhibit group-synchronous ovarian follicle development. In order to investigate intra-ovarian molecular mechanisms in Senegalese sole, the aim of the present study was to identify differentially expressed genes in the ovary during oocyte growth (vitellogenesis), maturation and ovarian follicle atresia using a recently developed oligonucleotide microarray. RESULTS: Microarray analysis led to the identification of 118 differentially expressed transcripts, of which 20 and 8 were monitored by real-time PCR and in situ hybridization, respectively. During vitellogenesis, many up-regulated ovarian transcripts had putative mitochondrial function/location suggesting high energy production (NADH dehydrogenase subunits, cytochromes) and increased antioxidant protection (selenoprotein W2a), whereas other regulated transcripts were related to cytoskeleton and zona radiata organization (zona glycoprotein 3, alpha and beta actin, keratin 8), intracellular signalling pathways (heat shock protein 90, Ras homolog member G), cell-to-cell and cell-to-matrix interactions (beta 1 integrin, thrombospondin 4b), and the maternal RNA pool (transducer of ERBB2 1a, neurexin 1a). Transcripts up-regulated in the ovary during oocyte maturation included ion transporters (Na(+)-K(+)-ATPase subunits), probably required for oocyte hydration, as well as a proteinase inhibitor (alpha-2-macroglobulin) and a vesicle calcium sensor protein (extended synaptotagmin-2-A). During follicular atresia, few transcripts were found to be up-regulated, but remarkably most of them were localized in follicular cells of atretic follicles, and they had inferred roles in lipid transport (apolipoprotein C-I), chemotaxis (leukocyte cell-derived chemotaxin 2,), angiogenesis (thrombospondin), and prevention of apoptosis (S100a10 calcium binding protein). CONCLUSION: This study has identified a number of differentially expressed genes in the ovary that were not previously found to be regulated during ovarian development in marine fish. Specifically, we found evidence, for the first time in teleosts, of the activation of chemoattractant, angiogenic and antiapoptotic pathways in hypertrophied follicular cells at the onset of ovarian atresia. |
format | Text |
id | pubmed-2751788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27517882009-09-25 New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis Tingaud-Sequeira, Angèle Chauvigné, François Lozano, Juanjo Agulleiro, María J Asensio, Esther Cerdà, Joan BMC Genomics Research Article BACKGROUND: The Senegalese sole (Solea senegalensis) is a marine flatfish of increasing commercial interest. However, the reproduction of this species in captivity is not yet controlled mainly because of the poor knowledge on its reproductive physiology, as it occurs for other non-salmonid marine teleosts that exhibit group-synchronous ovarian follicle development. In order to investigate intra-ovarian molecular mechanisms in Senegalese sole, the aim of the present study was to identify differentially expressed genes in the ovary during oocyte growth (vitellogenesis), maturation and ovarian follicle atresia using a recently developed oligonucleotide microarray. RESULTS: Microarray analysis led to the identification of 118 differentially expressed transcripts, of which 20 and 8 were monitored by real-time PCR and in situ hybridization, respectively. During vitellogenesis, many up-regulated ovarian transcripts had putative mitochondrial function/location suggesting high energy production (NADH dehydrogenase subunits, cytochromes) and increased antioxidant protection (selenoprotein W2a), whereas other regulated transcripts were related to cytoskeleton and zona radiata organization (zona glycoprotein 3, alpha and beta actin, keratin 8), intracellular signalling pathways (heat shock protein 90, Ras homolog member G), cell-to-cell and cell-to-matrix interactions (beta 1 integrin, thrombospondin 4b), and the maternal RNA pool (transducer of ERBB2 1a, neurexin 1a). Transcripts up-regulated in the ovary during oocyte maturation included ion transporters (Na(+)-K(+)-ATPase subunits), probably required for oocyte hydration, as well as a proteinase inhibitor (alpha-2-macroglobulin) and a vesicle calcium sensor protein (extended synaptotagmin-2-A). During follicular atresia, few transcripts were found to be up-regulated, but remarkably most of them were localized in follicular cells of atretic follicles, and they had inferred roles in lipid transport (apolipoprotein C-I), chemotaxis (leukocyte cell-derived chemotaxin 2,), angiogenesis (thrombospondin), and prevention of apoptosis (S100a10 calcium binding protein). CONCLUSION: This study has identified a number of differentially expressed genes in the ovary that were not previously found to be regulated during ovarian development in marine fish. Specifically, we found evidence, for the first time in teleosts, of the activation of chemoattractant, angiogenic and antiapoptotic pathways in hypertrophied follicular cells at the onset of ovarian atresia. BioMed Central 2009-09-15 /pmc/articles/PMC2751788/ /pubmed/19754951 http://dx.doi.org/10.1186/1471-2164-10-434 Text en Copyright © 2009 Tingaud-Sequeira et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tingaud-Sequeira, Angèle Chauvigné, François Lozano, Juanjo Agulleiro, María J Asensio, Esther Cerdà, Joan New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis |
title | New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis |
title_full | New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis |
title_fullStr | New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis |
title_full_unstemmed | New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis |
title_short | New insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis |
title_sort | new insights into molecular pathways associated with flatfish ovarian development and atresia revealed by transcriptional analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751788/ https://www.ncbi.nlm.nih.gov/pubmed/19754951 http://dx.doi.org/10.1186/1471-2164-10-434 |
work_keys_str_mv | AT tingaudsequeiraangele newinsightsintomolecularpathwaysassociatedwithflatfishovariandevelopmentandatresiarevealedbytranscriptionalanalysis AT chauvignefrancois newinsightsintomolecularpathwaysassociatedwithflatfishovariandevelopmentandatresiarevealedbytranscriptionalanalysis AT lozanojuanjo newinsightsintomolecularpathwaysassociatedwithflatfishovariandevelopmentandatresiarevealedbytranscriptionalanalysis AT agulleiromariaj newinsightsintomolecularpathwaysassociatedwithflatfishovariandevelopmentandatresiarevealedbytranscriptionalanalysis AT asensioesther newinsightsintomolecularpathwaysassociatedwithflatfishovariandevelopmentandatresiarevealedbytranscriptionalanalysis AT cerdajoan newinsightsintomolecularpathwaysassociatedwithflatfishovariandevelopmentandatresiarevealedbytranscriptionalanalysis |