Cargando…
Cysteine protease activation and apoptosis in Murine norovirus infection
BACKGROUND: Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV) serves as a model system for the study of norovirus infectio...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753316/ https://www.ncbi.nlm.nih.gov/pubmed/19744337 http://dx.doi.org/10.1186/1743-422X-6-139 |
_version_ | 1782172332078399488 |
---|---|
author | Furman, Linnzi M Maaty, Walid S Petersen, Lena K Ettayebi, Khalil Hardy, Michele E Bothner, Brian |
author_facet | Furman, Linnzi M Maaty, Walid S Petersen, Lena K Ettayebi, Khalil Hardy, Michele E Bothner, Brian |
author_sort | Furman, Linnzi M |
collection | PubMed |
description | BACKGROUND: Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV) serves as a model system for the study of norovirus infection. Recently it was shown that infection of RAW 264.7 cells involved a novel apoptotic pathway involving survivin. RESULTS: Using a different set of approaches, the up-regulation of caspases, DNA condensation/fragmentation, and membrane blebbing, all of which are markers of apoptosis, were confirmed. Live cell imaging and activity-based protein profiling showed that activation of caspase-like proteases occurred within two hours of infection, followed by morphological changes to the cells. MNV infection in the presence of caspase inhibitors proceeded via a distinct pathway of rapid cellular necrosis and reduced viral production. Affinity purification of activity-based protein profiling targets and identification by peptide mass fingerprinting showed that the cysteine protease cathepsin B was activated early in infection, establishing this protein as an upstream activator of the intrinsic apoptotic pathway. CONCLUSION: This work adds cathepsin B to the noncanonical programmed cell death induced by MNV, and provides data suggesting that the virus may induce apoptosis to expand the window of time for viral replication. This work also highlights the significant power of activity-based protein profiling in the study of viral pathogenesis. |
format | Text |
id | pubmed-2753316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27533162009-09-29 Cysteine protease activation and apoptosis in Murine norovirus infection Furman, Linnzi M Maaty, Walid S Petersen, Lena K Ettayebi, Khalil Hardy, Michele E Bothner, Brian Virol J Research BACKGROUND: Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV) serves as a model system for the study of norovirus infection. Recently it was shown that infection of RAW 264.7 cells involved a novel apoptotic pathway involving survivin. RESULTS: Using a different set of approaches, the up-regulation of caspases, DNA condensation/fragmentation, and membrane blebbing, all of which are markers of apoptosis, were confirmed. Live cell imaging and activity-based protein profiling showed that activation of caspase-like proteases occurred within two hours of infection, followed by morphological changes to the cells. MNV infection in the presence of caspase inhibitors proceeded via a distinct pathway of rapid cellular necrosis and reduced viral production. Affinity purification of activity-based protein profiling targets and identification by peptide mass fingerprinting showed that the cysteine protease cathepsin B was activated early in infection, establishing this protein as an upstream activator of the intrinsic apoptotic pathway. CONCLUSION: This work adds cathepsin B to the noncanonical programmed cell death induced by MNV, and provides data suggesting that the virus may induce apoptosis to expand the window of time for viral replication. This work also highlights the significant power of activity-based protein profiling in the study of viral pathogenesis. BioMed Central 2009-09-10 /pmc/articles/PMC2753316/ /pubmed/19744337 http://dx.doi.org/10.1186/1743-422X-6-139 Text en Copyright © 2009 Furman et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Furman, Linnzi M Maaty, Walid S Petersen, Lena K Ettayebi, Khalil Hardy, Michele E Bothner, Brian Cysteine protease activation and apoptosis in Murine norovirus infection |
title | Cysteine protease activation and apoptosis in Murine norovirus infection |
title_full | Cysteine protease activation and apoptosis in Murine norovirus infection |
title_fullStr | Cysteine protease activation and apoptosis in Murine norovirus infection |
title_full_unstemmed | Cysteine protease activation and apoptosis in Murine norovirus infection |
title_short | Cysteine protease activation and apoptosis in Murine norovirus infection |
title_sort | cysteine protease activation and apoptosis in murine norovirus infection |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753316/ https://www.ncbi.nlm.nih.gov/pubmed/19744337 http://dx.doi.org/10.1186/1743-422X-6-139 |
work_keys_str_mv | AT furmanlinnzim cysteineproteaseactivationandapoptosisinmurinenorovirusinfection AT maatywalids cysteineproteaseactivationandapoptosisinmurinenorovirusinfection AT petersenlenak cysteineproteaseactivationandapoptosisinmurinenorovirusinfection AT ettayebikhalil cysteineproteaseactivationandapoptosisinmurinenorovirusinfection AT hardymichelee cysteineproteaseactivationandapoptosisinmurinenorovirusinfection AT bothnerbrian cysteineproteaseactivationandapoptosisinmurinenorovirusinfection |