Cargando…
NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction
BACKGROUND: The major histocompatibility complex (MHC) molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humor...
Autores principales: | Nielsen, Morten, Lund, Ole |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753847/ https://www.ncbi.nlm.nih.gov/pubmed/19765293 http://dx.doi.org/10.1186/1471-2105-10-296 |
Ejemplares similares
-
Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
por: Nielsen, Morten, et al.
Publicado: (2007) -
Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules
por: Zhang, Hao, et al.
Publicado: (2010) -
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
por: Han, Youngmahn, et al.
Publicado: (2017) -
Amino acid biophysical properties in the statistical prediction of peptide-MHC class I binding
por: Ray, Surajit, et al.
Publicado: (2007) -
Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities
por: Pedersen, Lasse Eggers, et al.
Publicado: (2011)