Cargando…

Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor

BACKGROUND: Previous studies have revealed that the lysin motif (LysM) domains of bacterial cell wall-degrading enzymes are able to bind to peptidoglycan moieties of the cell wall. This suggests an approach for a cell surface display system in Gram-positive bacteria using a LysM-containing protein a...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Xiaohu, Jiang, Mengtian, Yu, Ziniu, Cai, Hao, Li, Lin
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754439/
https://www.ncbi.nlm.nih.gov/pubmed/19754974
http://dx.doi.org/10.1186/1475-2859-8-48
Descripción
Sumario:BACKGROUND: Previous studies have revealed that the lysin motif (LysM) domains of bacterial cell wall-degrading enzymes are able to bind to peptidoglycan moieties of the cell wall. This suggests an approach for a cell surface display system in Gram-positive bacteria using a LysM-containing protein as the anchoring motif. In this study, we developed a new surface display system in B. thuringiensis using a LysM-containing peptidoglycan hydrolase, endo-β-N-acetylglucosaminidase (Mbg), as the anchor protein. RESULTS: Homology searching in the B. thuringiensis YBT-1520 genome revealed a putative peptidoglycan hydrolase gene. The encoded protein, Mbg, exhibited substantial cell-wall binding capacity. The deduced amino acid sequence of Mbg was structurally distinguished as an N-terminal domain with two tandemly aligned LysMs and a C-terminal catalytic domain. A GFP-fusion protein was expressed and used to verify the surface localization by Western blot, flow cytometry, protease accessibility, SDS sensitivity, immunofluorescence, and electron microscopy assays. Low-level constitutive expression of Mbg was elevated by introducing a sporulation-independent promoter of cry3Aa. Truncated Mbg domains with separate N-terminus (Mbgn), C-terminus (Mbgc), LysM(1), or LysM(2 )were further compared for their cell-wall displaying efficiencies. The Mbgn moiety contributed to cell-wall anchoring, while LysM(1 )was the active domain. Two tandemly repeated Mbgns exhibited the highest display activity, while the activity of three repeated Mbgns was decreased. A heterologous bacterial multicopper oxidase (WlacD) was successfully displayed onto the surface of B. thuringiensis target cells using the optimum (Mbgn)(2 )anchor, without radically altering its catalytic activity. CONCLUSION: Mbg can be a functional anchor protein to target different heterologous proteins onto the surface of B. thuringiensis cells. Since the LysM domain appears to be universal in Gram-positive bacteria, the strategy presented here could be applicable in other bacteria for developing this type of system.