Cargando…

Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis

BACKGROUND: The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in ~30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2α inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylati...

Descripción completa

Detalles Bibliográficos
Autores principales: Sequeira, Sharon J, Wen, Huei Chi, Avivar-Valderas, Alvaro, Farias, Eduardo F, Aguirre-Ghiso, Julio A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754445/
https://www.ncbi.nlm.nih.gov/pubmed/19754954
http://dx.doi.org/10.1186/1471-2121-10-64
_version_ 1782172396495568896
author Sequeira, Sharon J
Wen, Huei Chi
Avivar-Valderas, Alvaro
Farias, Eduardo F
Aguirre-Ghiso, Julio A
author_facet Sequeira, Sharon J
Wen, Huei Chi
Avivar-Valderas, Alvaro
Farias, Eduardo F
Aguirre-Ghiso, Julio A
author_sort Sequeira, Sharon J
collection PubMed
description BACKGROUND: The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in ~30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2α inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2α can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival. Here we explore whether ErbB2 modulates eIF2α phosphorylation and whether forced phosphorylation of the latter can antagonize ErbB2 deregulation of mammary acinar morphogenesis. RESULTS: We tested whether ErbB2 signaling influenced eIF2α signaling and whether enhanced phosphorylation of the latter affected ErbB2-deregulated mammary acinar development. We obtained stable MCF10A cells overexpressing wild-type (Wt) Neu/ErbB2 or a constitutively active (CA) variant via retroviral delivery or mammary tumor cells from MMTV-Neu tumors. Western blotting, RT-PCR and confocal microscopy were used to analyze the effects of ErbB2 activation on eIF2α signaling and the effect of the GADD34-PP1C inhibitor salubrinal. Wt- and MMTV-Neu cells formed aberrant acini structures resembling DCIS, while CA-ErbB2 overexpression induced invasive lesions. In these structures we found that CA-ErbB2 but not the Wt variant significantly down-regulated the pro-apoptotic gene CHOP. This occurred without apparent modulation of basal phosphorylation of PERK and eIF2α or induction of its downstream target ATF4. However, inhibition of eIF2α dephosphorylation with salubrinal was sufficient to inhibit Wt- and CA-ErbB2- as well as MMTV-Neu-induced deregulation of acinar growth. This was linked to enhanced CHOP expression, inhibition of proliferation, induction of apoptosis and luminal clearing in Wt-ErbB2 and to inhibition of cyclin D1 levels and subsequent proliferation in CA-ErbB2 cells. CONCLUSION: Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and eIF2α phosphorylation. ErbB2 uncouples in basal conditions eIF2α phosphorylation from CHOP induction. However, this signal was restored by salubrinal treatment in Wt-ErbB2 expressing MCF10A cells as these DCIS-like structures underwent luminal clearing. In CA-ErbB2 structures apoptosis is not induced by salubrinal and instead a state of quiescence with reduced proliferation was achieved. Treatments that stabilize P-eIF2α levels may be effective in treating ErbB2 positive cancers without severely disrupting normal tissue function and structure.
format Text
id pubmed-2754445
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27544452009-09-30 Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis Sequeira, Sharon J Wen, Huei Chi Avivar-Valderas, Alvaro Farias, Eduardo F Aguirre-Ghiso, Julio A BMC Cell Biol Research Article BACKGROUND: The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in ~30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2α inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2α can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival. Here we explore whether ErbB2 modulates eIF2α phosphorylation and whether forced phosphorylation of the latter can antagonize ErbB2 deregulation of mammary acinar morphogenesis. RESULTS: We tested whether ErbB2 signaling influenced eIF2α signaling and whether enhanced phosphorylation of the latter affected ErbB2-deregulated mammary acinar development. We obtained stable MCF10A cells overexpressing wild-type (Wt) Neu/ErbB2 or a constitutively active (CA) variant via retroviral delivery or mammary tumor cells from MMTV-Neu tumors. Western blotting, RT-PCR and confocal microscopy were used to analyze the effects of ErbB2 activation on eIF2α signaling and the effect of the GADD34-PP1C inhibitor salubrinal. Wt- and MMTV-Neu cells formed aberrant acini structures resembling DCIS, while CA-ErbB2 overexpression induced invasive lesions. In these structures we found that CA-ErbB2 but not the Wt variant significantly down-regulated the pro-apoptotic gene CHOP. This occurred without apparent modulation of basal phosphorylation of PERK and eIF2α or induction of its downstream target ATF4. However, inhibition of eIF2α dephosphorylation with salubrinal was sufficient to inhibit Wt- and CA-ErbB2- as well as MMTV-Neu-induced deregulation of acinar growth. This was linked to enhanced CHOP expression, inhibition of proliferation, induction of apoptosis and luminal clearing in Wt-ErbB2 and to inhibition of cyclin D1 levels and subsequent proliferation in CA-ErbB2 cells. CONCLUSION: Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and eIF2α phosphorylation. ErbB2 uncouples in basal conditions eIF2α phosphorylation from CHOP induction. However, this signal was restored by salubrinal treatment in Wt-ErbB2 expressing MCF10A cells as these DCIS-like structures underwent luminal clearing. In CA-ErbB2 structures apoptosis is not induced by salubrinal and instead a state of quiescence with reduced proliferation was achieved. Treatments that stabilize P-eIF2α levels may be effective in treating ErbB2 positive cancers without severely disrupting normal tissue function and structure. BioMed Central 2009-09-15 /pmc/articles/PMC2754445/ /pubmed/19754954 http://dx.doi.org/10.1186/1471-2121-10-64 Text en Copyright © 2009 Sequeira et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sequeira, Sharon J
Wen, Huei Chi
Avivar-Valderas, Alvaro
Farias, Eduardo F
Aguirre-Ghiso, Julio A
Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis
title Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis
title_full Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis
title_fullStr Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis
title_full_unstemmed Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis
title_short Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis
title_sort inhibition of eif2α dephosphorylation inhibits erbb2-induced deregulation of mammary acinar morphogenesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754445/
https://www.ncbi.nlm.nih.gov/pubmed/19754954
http://dx.doi.org/10.1186/1471-2121-10-64
work_keys_str_mv AT sequeirasharonj inhibitionofeif2adephosphorylationinhibitserbb2inducedderegulationofmammaryacinarmorphogenesis
AT wenhueichi inhibitionofeif2adephosphorylationinhibitserbb2inducedderegulationofmammaryacinarmorphogenesis
AT avivarvalderasalvaro inhibitionofeif2adephosphorylationinhibitserbb2inducedderegulationofmammaryacinarmorphogenesis
AT fariaseduardof inhibitionofeif2adephosphorylationinhibitserbb2inducedderegulationofmammaryacinarmorphogenesis
AT aguirreghisojulioa inhibitionofeif2adephosphorylationinhibitserbb2inducedderegulationofmammaryacinarmorphogenesis