Cargando…

In Vivo Biotransformation of 3,3′,4,4′-Tetrachlorobiphenyl by Whole Plants−Poplars and Switchgrass

Polychlorinated biphenyls (PCBs) are widely distributed persistent organic pollutants. In vitro research has shown that plant cell cultures might transform lower chlorinated congeners to hydroxylated PCBs, but there are few studies on in vivo metabolism of PCBs by intact whole plants. In this resear...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jiyan, Hu, Dingfei, Jiang, Guibin, Schnoor, Jerald L.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2009
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754666/
https://www.ncbi.nlm.nih.gov/pubmed/19848168
http://dx.doi.org/10.1021/es901244h
Descripción
Sumario:Polychlorinated biphenyls (PCBs) are widely distributed persistent organic pollutants. In vitro research has shown that plant cell cultures might transform lower chlorinated congeners to hydroxylated PCBs, but there are few studies on in vivo metabolism of PCBs by intact whole plants. In this research, poplar plants (Populus deltoides × nigra, DN34) and switchgrass (Panicum vigratum, Alamo) were hydroponically exposed to 3,3′,4,4′-tetrachlorobiphenyl (CB77). Metabolism in plants occurred rapidly, and metabolites were detected after only a 24 h exposure. Rearrangement of chlorine atoms and dechlorination of CB77 by plants was unexpectedly observed. In addition, poplars were able to hydroxylate CB77 and the metabolite 6-hydroxy-3,3′,4,4′-tetrachlorobiphenyl (6-OH-CB77) was identified and quantified. Hybrid poplar was able to hydroxylate CB77, but switchgrass was not, suggesting that enzymatic transformations are plant specific. Sulfur-containing metabolites (from the action of sulfotransferases) were investigated in this study, but they were not detected in either poplar or switchgrass.