Cargando…
Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach
BACKGROUND: Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical...
Autores principales: | Wang, Wenhui, Nunez-Iglesias, Juan, Luan, Yihui, Sun, Fengzhu |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755484/ https://www.ncbi.nlm.nih.gov/pubmed/19728875 http://dx.doi.org/10.1186/1471-2105-10-277 |
Ejemplares similares
-
dK-Microaggregation: Anonymizing Graphs with Differential Privacy Guarantees
por: Iftikhar, Masooma, et al.
Publicado: (2020) -
Pseudo-Riemannian homogeneous structures
por: Calvaruso, Giovanni, et al.
Publicado: (2019) -
Composite likelihood estimation of demographic parameters
por: Garrigan, Daniel
Publicado: (2009) -
Prepaid parameter estimation without likelihoods
por: Mestdagh, Merijn, et al.
Publicado: (2019) -
Regional Homogeneity Brain Alterations in Schizophrenia: An Activation Likelihood Estimation Meta-Analysis
por: Qiu, Xiaolei, et al.
Publicado: (2021)