Cargando…

Growth cone response to ephrin gradients produced by microfluidic networks

A microfluidic network (μFN) etched into a silicon wafer was used to deliver protein solutions containing different concentrations of the axonal guidance molecule ephrinA5 onto a silicone stamp. In a subsequent microcontact printing (μCP) step, the protein was transferred onto a polystyrene culture...

Descripción completa

Detalles Bibliográficos
Autores principales: Lang, Susanne, von Philipsborn, Anne C., Bernard, André, Bonhoeffer, Friedrich, Bastmeyer, Martin
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755754/
https://www.ncbi.nlm.nih.gov/pubmed/17557153
http://dx.doi.org/10.1007/s00216-007-1363-3
_version_ 1782172462603042816
author Lang, Susanne
von Philipsborn, Anne C.
Bernard, André
Bonhoeffer, Friedrich
Bastmeyer, Martin
author_facet Lang, Susanne
von Philipsborn, Anne C.
Bernard, André
Bonhoeffer, Friedrich
Bastmeyer, Martin
author_sort Lang, Susanne
collection PubMed
description A microfluidic network (μFN) etched into a silicon wafer was used to deliver protein solutions containing different concentrations of the axonal guidance molecule ephrinA5 onto a silicone stamp. In a subsequent microcontact printing (μCP) step, the protein was transferred onto a polystyrene culture dish. In this way, stepwise substrate-bound concentration gradients of ephrinA5 were fabricated spanning a total distance of 320 μm. We tested the response of chick retinal ganglion cell (RGC) axons, which are guided in vivo by ephrin gradients, to these in vitro gradients. Temporal, but not nasal axons stop at a distinct zone in the gradient, which is covered with a certain surface density of substrate-bound ephrinA5. Within the temporal RGC population, all axons respond uniformly to the gradients tested. The position of the stop zone depends on the slope of the gradient with axons growing further into the gradient in shallow gradients than in steep gradients. However, axons stop at lower ephrinA5 concentrations in shallow gradients than in steep gradients, indicating that the growth cone can adjust its sensitivity during the detection of a concentration gradient of ephrinA5.
format Text
id pubmed-2755754
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-27557542009-10-07 Growth cone response to ephrin gradients produced by microfluidic networks Lang, Susanne von Philipsborn, Anne C. Bernard, André Bonhoeffer, Friedrich Bastmeyer, Martin Anal Bioanal Chem Original Paper A microfluidic network (μFN) etched into a silicon wafer was used to deliver protein solutions containing different concentrations of the axonal guidance molecule ephrinA5 onto a silicone stamp. In a subsequent microcontact printing (μCP) step, the protein was transferred onto a polystyrene culture dish. In this way, stepwise substrate-bound concentration gradients of ephrinA5 were fabricated spanning a total distance of 320 μm. We tested the response of chick retinal ganglion cell (RGC) axons, which are guided in vivo by ephrin gradients, to these in vitro gradients. Temporal, but not nasal axons stop at a distinct zone in the gradient, which is covered with a certain surface density of substrate-bound ephrinA5. Within the temporal RGC population, all axons respond uniformly to the gradients tested. The position of the stop zone depends on the slope of the gradient with axons growing further into the gradient in shallow gradients than in steep gradients. However, axons stop at lower ephrinA5 concentrations in shallow gradients than in steep gradients, indicating that the growth cone can adjust its sensitivity during the detection of a concentration gradient of ephrinA5. Springer-Verlag 2007-06-08 2008-02 /pmc/articles/PMC2755754/ /pubmed/17557153 http://dx.doi.org/10.1007/s00216-007-1363-3 Text en © Springer-Verlag 2007
spellingShingle Original Paper
Lang, Susanne
von Philipsborn, Anne C.
Bernard, André
Bonhoeffer, Friedrich
Bastmeyer, Martin
Growth cone response to ephrin gradients produced by microfluidic networks
title Growth cone response to ephrin gradients produced by microfluidic networks
title_full Growth cone response to ephrin gradients produced by microfluidic networks
title_fullStr Growth cone response to ephrin gradients produced by microfluidic networks
title_full_unstemmed Growth cone response to ephrin gradients produced by microfluidic networks
title_short Growth cone response to ephrin gradients produced by microfluidic networks
title_sort growth cone response to ephrin gradients produced by microfluidic networks
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755754/
https://www.ncbi.nlm.nih.gov/pubmed/17557153
http://dx.doi.org/10.1007/s00216-007-1363-3
work_keys_str_mv AT langsusanne growthconeresponsetoephringradientsproducedbymicrofluidicnetworks
AT vonphilipsbornannec growthconeresponsetoephringradientsproducedbymicrofluidicnetworks
AT bernardandre growthconeresponsetoephringradientsproducedbymicrofluidicnetworks
AT bonhoefferfriedrich growthconeresponsetoephringradientsproducedbymicrofluidicnetworks
AT bastmeyermartin growthconeresponsetoephringradientsproducedbymicrofluidicnetworks