Cargando…
EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction
Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca(2+) via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the co...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757765/ https://www.ncbi.nlm.nih.gov/pubmed/19752189 http://dx.doi.org/10.1085/jgp.200910295 |
_version_ | 1782172550937182208 |
---|---|
author | Li, Weiyan Halling, David B. Hall, Amelia W. Aldrich, Richard W. |
author_facet | Li, Weiyan Halling, David B. Hall, Amelia W. Aldrich, Richard W. |
author_sort | Li, Weiyan |
collection | PubMed |
description | Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca(2+) via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca(2+) and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca(2+)-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca(2+). These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca(2+)-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca(2+) affinity than WT CaM. |
format | Text |
id | pubmed-2757765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-27577652010-04-01 EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction Li, Weiyan Halling, David B. Hall, Amelia W. Aldrich, Richard W. J Gen Physiol Article Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca(2+) via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca(2+) and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca(2+)-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca(2+). These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca(2+)-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca(2+) affinity than WT CaM. The Rockefeller University Press 2009-10 /pmc/articles/PMC2757765/ /pubmed/19752189 http://dx.doi.org/10.1085/jgp.200910295 Text en © 2009 Li et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jgp.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Article Li, Weiyan Halling, David B. Hall, Amelia W. Aldrich, Richard W. EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction |
title | EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction |
title_full | EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction |
title_fullStr | EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction |
title_full_unstemmed | EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction |
title_short | EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK–calmodulin interaction |
title_sort | ef hands at the n-lobe of calmodulin are required for both sk channel gating and stable sk–calmodulin interaction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757765/ https://www.ncbi.nlm.nih.gov/pubmed/19752189 http://dx.doi.org/10.1085/jgp.200910295 |
work_keys_str_mv | AT liweiyan efhandsatthenlobeofcalmodulinarerequiredforbothskchannelgatingandstableskcalmodulininteraction AT hallingdavidb efhandsatthenlobeofcalmodulinarerequiredforbothskchannelgatingandstableskcalmodulininteraction AT hallameliaw efhandsatthenlobeofcalmodulinarerequiredforbothskchannelgatingandstableskcalmodulininteraction AT aldrichrichardw efhandsatthenlobeofcalmodulinarerequiredforbothskchannelgatingandstableskcalmodulininteraction |