Cargando…

Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword

Many but not all species of Streptomyces species harbour a bicistronic melC operon, in which melC2 encodes an extracellular tyrosinase (a polyphenol oxidase) and melC1 encodes a helper protein. On the other hand, a melC-homologous operon (melD) is present in all sequenced Streptomyces chromosomes an...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Han-Yu, Chen, Carton W.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758597/
https://www.ncbi.nlm.nih.gov/pubmed/19826489
http://dx.doi.org/10.1371/journal.pone.0007462
_version_ 1782172603730886656
author Yang, Han-Yu
Chen, Carton W.
author_facet Yang, Han-Yu
Chen, Carton W.
author_sort Yang, Han-Yu
collection PubMed
description Many but not all species of Streptomyces species harbour a bicistronic melC operon, in which melC2 encodes an extracellular tyrosinase (a polyphenol oxidase) and melC1 encodes a helper protein. On the other hand, a melC-homologous operon (melD) is present in all sequenced Streptomyces chromosomes and could be isolated by PCR from six other species tested. Bioinformatic analysis showed that melC and melD have divergently evolved toward different functions. MelD2, unlike tyrosinase (MelC2), is not secreted, and has a narrower substrate spectrum. Deletion of melD caused an increased sensitivity to several phenolics that are substrates of MelD2. Intracellularly, MelD2 presumably oxidizes the phenolics, thus bypassing spontaneous copper-dependent oxidation that generates DNA-damaging reactive oxygen species. Surprisingly, melC(+) strains were more sensitive rather than less sensitive to phenolics than melC (−) strains. This appeared to be due to conversion of the phenolics by MelC2 to more hydrophobic and membrane-permeable quinones. We propose that the conserved melD operon is involved in defense against phenolics produced by plants, and the sporadically present melC operon probably plays an aggressive role in converting the phenolics to the more permeable quinones, thus fending off less tolerant competing microbes (lacking melD) in the phenolic-rich rhizosphere.
format Text
id pubmed-2758597
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-27585972009-10-14 Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword Yang, Han-Yu Chen, Carton W. PLoS One Research Article Many but not all species of Streptomyces species harbour a bicistronic melC operon, in which melC2 encodes an extracellular tyrosinase (a polyphenol oxidase) and melC1 encodes a helper protein. On the other hand, a melC-homologous operon (melD) is present in all sequenced Streptomyces chromosomes and could be isolated by PCR from six other species tested. Bioinformatic analysis showed that melC and melD have divergently evolved toward different functions. MelD2, unlike tyrosinase (MelC2), is not secreted, and has a narrower substrate spectrum. Deletion of melD caused an increased sensitivity to several phenolics that are substrates of MelD2. Intracellularly, MelD2 presumably oxidizes the phenolics, thus bypassing spontaneous copper-dependent oxidation that generates DNA-damaging reactive oxygen species. Surprisingly, melC(+) strains were more sensitive rather than less sensitive to phenolics than melC (−) strains. This appeared to be due to conversion of the phenolics by MelC2 to more hydrophobic and membrane-permeable quinones. We propose that the conserved melD operon is involved in defense against phenolics produced by plants, and the sporadically present melC operon probably plays an aggressive role in converting the phenolics to the more permeable quinones, thus fending off less tolerant competing microbes (lacking melD) in the phenolic-rich rhizosphere. Public Library of Science 2009-10-14 /pmc/articles/PMC2758597/ /pubmed/19826489 http://dx.doi.org/10.1371/journal.pone.0007462 Text en Yang, Chen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Yang, Han-Yu
Chen, Carton W.
Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword
title Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword
title_full Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword
title_fullStr Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword
title_full_unstemmed Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword
title_short Extracellular and Intracellular Polyphenol Oxidases Cause Opposite Effects on Sensitivity of Streptomyces to Phenolics: A Case of Double-Edged Sword
title_sort extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of streptomyces to phenolics: a case of double-edged sword
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758597/
https://www.ncbi.nlm.nih.gov/pubmed/19826489
http://dx.doi.org/10.1371/journal.pone.0007462
work_keys_str_mv AT yanghanyu extracellularandintracellularpolyphenoloxidasescauseoppositeeffectsonsensitivityofstreptomycestophenolicsacaseofdoubleedgedsword
AT chencartonw extracellularandintracellularpolyphenoloxidasescauseoppositeeffectsonsensitivityofstreptomycestophenolicsacaseofdoubleedgedsword