Cargando…
Experience-Dependent, Rapid Structural Changes in Hippocampal Pyramidal Cell Spines
Morphological changes in dendritic spines may contribute to the fine tuning of neural network connectivity. The relationship between spine morphology and experience-dependent neuronal activity, however, is largely unknown. In the present study, we combined 2 histological analyses to examine this rel...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758678/ https://www.ncbi.nlm.nih.gov/pubmed/19240139 http://dx.doi.org/10.1093/cercor/bhp012 |
Sumario: | Morphological changes in dendritic spines may contribute to the fine tuning of neural network connectivity. The relationship between spine morphology and experience-dependent neuronal activity, however, is largely unknown. In the present study, we combined 2 histological analyses to examine this relationship: 1) Measurement of spines of neurons whose morphology was visualized in brain sections of mice expressing membrane-targeted green florescent protein (Thy1-mGFP mice) and 2) Categorization of CA1 neurons by immunohistochemical monitoring of Arc expression as a putative marker of recent neuronal activity. After mice were exposed to a novel, enriched environment for 60 min, neurons that expressed Arc had fewer small spines and more large spines than Arc-negative cells. These differences were not observed when the exploration time was shortened to 15 min. This net-balanced structural change is consistent with both synapse-specific enhancement and suppression. These results provide the first evidence of rapid morphological changes in spines that were preferential to a subset of neurons in association with an animal's experiences. |
---|