Cargando…
Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation
There are several models of premotor cortex contributions to sensorimotor behavior. For instance, the ventral premotor cortex (PMv) appears to be involved in processing visuospatial object properties for grasping, whereas the dorsal premotor cortex (PMd) is involved in using arbitrary rules to guide...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758685/ https://www.ncbi.nlm.nih.gov/pubmed/19321652 http://dx.doi.org/10.1093/cercor/bhp049 |
_version_ | 1782172607020269568 |
---|---|
author | Majdandžić, Jasminka Bekkering, Harold van Schie, Hein T. Toni, Ivan |
author_facet | Majdandžić, Jasminka Bekkering, Harold van Schie, Hein T. Toni, Ivan |
author_sort | Majdandžić, Jasminka |
collection | PubMed |
description | There are several models of premotor cortex contributions to sensorimotor behavior. For instance, the ventral premotor cortex (PMv) appears to be involved in processing visuospatial object properties for grasping, whereas the dorsal premotor cortex (PMd) is involved in using arbitrary rules to guide advance motor planning. These models have focused on individual movements. Here, we examine the premotor responses evoked during the processing of individual movements functionally embedded in an action. We tested whether processing hand–object interactions and action end states would differentially engage PMv and PMd. We used a repetition suppression (RS)–functional magnetic resonance imaging paradigm in which we independently manipulated the observed grip, the end position of the object (independent of its spatial location), and the hand trajectory. By comparing novel and repeated trials for each of these action components, we could isolate RS effects specific to each of them. Repeating the grasp component attenuated activity in right PMv, whereas repeating the end state of the action reduced blood oxygen level–dependent activity in the left PMd. These results suggest that PMv is involved in controlling the kinematic means of an appropriate hand–object interaction, whereas PMd is focused on specifying the desired end state of an action. |
format | Text |
id | pubmed-2758685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-27586852009-10-08 Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation Majdandžić, Jasminka Bekkering, Harold van Schie, Hein T. Toni, Ivan Cereb Cortex Articles There are several models of premotor cortex contributions to sensorimotor behavior. For instance, the ventral premotor cortex (PMv) appears to be involved in processing visuospatial object properties for grasping, whereas the dorsal premotor cortex (PMd) is involved in using arbitrary rules to guide advance motor planning. These models have focused on individual movements. Here, we examine the premotor responses evoked during the processing of individual movements functionally embedded in an action. We tested whether processing hand–object interactions and action end states would differentially engage PMv and PMd. We used a repetition suppression (RS)–functional magnetic resonance imaging paradigm in which we independently manipulated the observed grip, the end position of the object (independent of its spatial location), and the hand trajectory. By comparing novel and repeated trials for each of these action components, we could isolate RS effects specific to each of them. Repeating the grasp component attenuated activity in right PMv, whereas repeating the end state of the action reduced blood oxygen level–dependent activity in the left PMd. These results suggest that PMv is involved in controlling the kinematic means of an appropriate hand–object interaction, whereas PMd is focused on specifying the desired end state of an action. Oxford University Press 2009-11 2009-03-25 /pmc/articles/PMC2758685/ /pubmed/19321652 http://dx.doi.org/10.1093/cercor/bhp049 Text en © 2009 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Majdandžić, Jasminka Bekkering, Harold van Schie, Hein T. Toni, Ivan Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation |
title | Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation |
title_full | Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation |
title_fullStr | Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation |
title_full_unstemmed | Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation |
title_short | Movement-Specific Repetition Suppression in Ventral and Dorsal Premotor Cortex during Action Observation |
title_sort | movement-specific repetition suppression in ventral and dorsal premotor cortex during action observation |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758685/ https://www.ncbi.nlm.nih.gov/pubmed/19321652 http://dx.doi.org/10.1093/cercor/bhp049 |
work_keys_str_mv | AT majdandzicjasminka movementspecificrepetitionsuppressioninventralanddorsalpremotorcortexduringactionobservation AT bekkeringharold movementspecificrepetitionsuppressioninventralanddorsalpremotorcortexduringactionobservation AT vanschieheint movementspecificrepetitionsuppressioninventralanddorsalpremotorcortexduringactionobservation AT toniivan movementspecificrepetitionsuppressioninventralanddorsalpremotorcortexduringactionobservation |