Cargando…
Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise
The human visual pathways that are specialized for object recognition stretch from lateral occipital cortex (LO) to the ventral surface of the temporal lobe, including the fusiform gyrus. Plasticity in these pathways supports the acquisition of visual expertise, but precisely how training affects th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758686/ https://www.ncbi.nlm.nih.gov/pubmed/19321653 http://dx.doi.org/10.1093/cercor/bhp051 |
_version_ | 1782172607247810560 |
---|---|
author | Harley, Erin M. Pope, Whitney B. Villablanca, J. Pablo Mumford, Jeanette Suh, Robert Mazziotta, John C. Enzmann, Dieter Engel, Stephen A. |
author_facet | Harley, Erin M. Pope, Whitney B. Villablanca, J. Pablo Mumford, Jeanette Suh, Robert Mazziotta, John C. Enzmann, Dieter Engel, Stephen A. |
author_sort | Harley, Erin M. |
collection | PubMed |
description | The human visual pathways that are specialized for object recognition stretch from lateral occipital cortex (LO) to the ventral surface of the temporal lobe, including the fusiform gyrus. Plasticity in these pathways supports the acquisition of visual expertise, but precisely how training affects the different regions remains unclear. We used functional magnetic resonance imaging to measure neural activity in both LO and the fusiform gyrus in radiologists as they detected abnormalities in chest radiographs. Activity in the right fusiform face area (FFA) correlated with visual expertise, measured as behavioral performance during scanning. In contrast, activity in left LO correlated negatively with expertise, and the amount of LO that responded to radiographs was smaller in experts than in novices. Activity in the FFA and LO correlated negatively in experts, whereas in novices, the 2 regions showed no stable relationship. Together, these results suggest that the FFA becomes more engaged and left LO less engaged in interpreting radiographic images over the course of training. Achieving expert visual performance may involve suppressing existing neural representations while simultaneously developing others. |
format | Text |
id | pubmed-2758686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-27586862009-10-08 Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise Harley, Erin M. Pope, Whitney B. Villablanca, J. Pablo Mumford, Jeanette Suh, Robert Mazziotta, John C. Enzmann, Dieter Engel, Stephen A. Cereb Cortex Articles The human visual pathways that are specialized for object recognition stretch from lateral occipital cortex (LO) to the ventral surface of the temporal lobe, including the fusiform gyrus. Plasticity in these pathways supports the acquisition of visual expertise, but precisely how training affects the different regions remains unclear. We used functional magnetic resonance imaging to measure neural activity in both LO and the fusiform gyrus in radiologists as they detected abnormalities in chest radiographs. Activity in the right fusiform face area (FFA) correlated with visual expertise, measured as behavioral performance during scanning. In contrast, activity in left LO correlated negatively with expertise, and the amount of LO that responded to radiographs was smaller in experts than in novices. Activity in the FFA and LO correlated negatively in experts, whereas in novices, the 2 regions showed no stable relationship. Together, these results suggest that the FFA becomes more engaged and left LO less engaged in interpreting radiographic images over the course of training. Achieving expert visual performance may involve suppressing existing neural representations while simultaneously developing others. Oxford University Press 2009-11 2009-03-25 /pmc/articles/PMC2758686/ /pubmed/19321653 http://dx.doi.org/10.1093/cercor/bhp051 Text en © 2009 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Harley, Erin M. Pope, Whitney B. Villablanca, J. Pablo Mumford, Jeanette Suh, Robert Mazziotta, John C. Enzmann, Dieter Engel, Stephen A. Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise |
title | Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise |
title_full | Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise |
title_fullStr | Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise |
title_full_unstemmed | Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise |
title_short | Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise |
title_sort | engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758686/ https://www.ncbi.nlm.nih.gov/pubmed/19321653 http://dx.doi.org/10.1093/cercor/bhp051 |
work_keys_str_mv | AT harleyerinm engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise AT popewhitneyb engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise AT villablancajpablo engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise AT mumfordjeanette engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise AT suhrobert engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise AT mazziottajohnc engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise AT enzmanndieter engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise AT engelstephena engagementoffusiformcortexanddisengagementoflateraloccipitalcortexintheacquisitionofradiologicalexpertise |