Cargando…

A switchable light-input, light-output system modelled and constructed in yeast

BACKGROUND: Advances in synthetic biology will require spatio-temporal regulation of biological processes in heterologous host cells. We develop a light-switchable, two-hybrid interaction in yeast, based upon the Arabidopsis proteins PHYTOCHROME A and FAR-RED ELONGATED HYPOCOTYL 1-LIKE. Light input...

Descripción completa

Detalles Bibliográficos
Autores principales: Sorokina, Oxana, Kapus, Anita, Terecskei, Kata, Dixon, Laura E, Kozma-Bognar, Laszlo, Nagy, Ferenc, Millar, Andrew J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758823/
https://www.ncbi.nlm.nih.gov/pubmed/19761615
http://dx.doi.org/10.1186/1754-1611-3-15
Descripción
Sumario:BACKGROUND: Advances in synthetic biology will require spatio-temporal regulation of biological processes in heterologous host cells. We develop a light-switchable, two-hybrid interaction in yeast, based upon the Arabidopsis proteins PHYTOCHROME A and FAR-RED ELONGATED HYPOCOTYL 1-LIKE. Light input to this regulatory module allows dynamic control of a light-emitting LUCIFERASE reporter gene, which we detect by real-time imaging of yeast colonies on solid media. RESULTS: The reversible activation of the phytochrome by red light, and its inactivation by far-red light, is retained. We use this quantitative readout to construct a mathematical model that matches the system's behaviour and predicts the molecular targets for future manipulation. CONCLUSION: Our model, methods and materials together constitute a novel system for a eukaryotic host with the potential to convert a dynamic pattern of light input into a predictable gene expression response. This system could be applied for the regulation of genetic networks - both known and synthetic.