Cargando…
Preimplantation genetic diagnosis for α-thalassaemia in China
PURPOSE: To report the usage of PGD for α-thalassaemia with the - -(SEA) genotype. METHOD: A PGD protocol using fluorescent gap PCR was performed for 51 cycles on 43 couples with the - -(SEA) genotype. Allele drop-out and amplification failure rates were retrospectively analyzed. RESULTS: A total of...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer US
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758951/ https://www.ncbi.nlm.nih.gov/pubmed/19813097 http://dx.doi.org/10.1007/s10815-009-9336-4 |
Sumario: | PURPOSE: To report the usage of PGD for α-thalassaemia with the - -(SEA) genotype. METHOD: A PGD protocol using fluorescent gap PCR was performed for 51 cycles on 43 couples with the - -(SEA) genotype. Allele drop-out and amplification failure rates were retrospectively analyzed. RESULTS: A total of 472 embryos were biopsied. Amplification was achieved in 390 blastomeres, accounting for an amplification rate of 82.6%. In total, 120 wild-type, 94 heterozygotes and 140 homozygous mutant embryos were diagnosed. The successful diagnosis rate was 75.0%. The ADO rate in 49 blastomeres from six donated embryos was 16.4%. One hundred and fifty four embryos were transferred, resulting in 25 clinical pregnancies with an implantation rate of 24.0%. CONCLUSIONS: Single-round fluorescent gap PCR is a feasible and effective strategy in the PGD for α-thalassaemia with the - -(SEA) genotype. |
---|