Cargando…
Evaluation of Two Outlier-Detection-Based Methods for Detecting Tissue-Selective Genes from Microarray Data
Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent’s...
Autores principales: | Kadota, Koji, Konishi, Tomokazu, Shimizu, Kentaro |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759137/ https://www.ncbi.nlm.nih.gov/pubmed/19936074 |
Ejemplares similares
-
A weighted average difference method for detecting differentially expressed genes from microarray data
por: Kadota, Koji, et al.
Publicado: (2008) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007) -
Evaluating methods for ranking differentially expressed genes applied to microArray quality control data
por: Kadota, Koji, et al.
Publicado: (2011) -
MOF: An R Function to Detect Outlier Microarray
por: Yang, Song, et al.
Publicado: (2008) -
Analytical method for detecting outlier evaluators
por: Wu, Yujie, et al.
Publicado: (2023)