Cargando…
Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nI...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759148/ https://www.ncbi.nlm.nih.gov/pubmed/19936101 |
_version_ | 1782172650380984320 |
---|---|
author | Gong, Ting Xuan, Jianhua Wang, Chen Li, Huai Hoffman, Eric Clarke, Robert Wang, Yue |
author_facet | Gong, Ting Xuan, Jianhua Wang, Chen Li, Huai Hoffman, Eric Clarke, Robert Wang, Yue |
author_sort | Gong, Ting |
collection | PubMed |
description | Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nICA) approach for transcriptional module discovery. nICA method utilizes the non-negativity constraint to enforce the independence of biological processes within the participated genes. In such, nICA decomposes the observed gene expression into positive independent components, which fits better to the reality of corresponding putative biological processes. In conjunction with nICA modeling, visual statistical data analyzer (VISDA) is applied to group genes into modules in latent variable space. We demonstrate the usefulness of the approach through the identification of composite modules from yeast data and the discovery of pathway modules in muscle regeneration. |
format | Text |
id | pubmed-2759148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Libertas Academica |
record_format | MEDLINE/PubMed |
spelling | pubmed-27591482009-11-23 Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis Gong, Ting Xuan, Jianhua Wang, Chen Li, Huai Hoffman, Eric Clarke, Robert Wang, Yue Gene Regul Syst Bio Original Research Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nICA) approach for transcriptional module discovery. nICA method utilizes the non-negativity constraint to enforce the independence of biological processes within the participated genes. In such, nICA decomposes the observed gene expression into positive independent components, which fits better to the reality of corresponding putative biological processes. In conjunction with nICA modeling, visual statistical data analyzer (VISDA) is applied to group genes into modules in latent variable space. We demonstrate the usefulness of the approach through the identification of composite modules from yeast data and the discovery of pathway modules in muscle regeneration. Libertas Academica 2008-01-15 /pmc/articles/PMC2759148/ /pubmed/19936101 Text en © 2007 The authors. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Original Research Gong, Ting Xuan, Jianhua Wang, Chen Li, Huai Hoffman, Eric Clarke, Robert Wang, Yue Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis |
title | Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis |
title_full | Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis |
title_fullStr | Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis |
title_full_unstemmed | Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis |
title_short | Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis |
title_sort | gene module identification from microarray data using nonnegative independent component analysis |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759148/ https://www.ncbi.nlm.nih.gov/pubmed/19936101 |
work_keys_str_mv | AT gongting genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis AT xuanjianhua genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis AT wangchen genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis AT lihuai genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis AT hoffmaneric genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis AT clarkerobert genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis AT wangyue genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis |