Cargando…

Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis

Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nI...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Ting, Xuan, Jianhua, Wang, Chen, Li, Huai, Hoffman, Eric, Clarke, Robert, Wang, Yue
Formato: Texto
Lenguaje:English
Publicado: Libertas Academica 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759148/
https://www.ncbi.nlm.nih.gov/pubmed/19936101
_version_ 1782172650380984320
author Gong, Ting
Xuan, Jianhua
Wang, Chen
Li, Huai
Hoffman, Eric
Clarke, Robert
Wang, Yue
author_facet Gong, Ting
Xuan, Jianhua
Wang, Chen
Li, Huai
Hoffman, Eric
Clarke, Robert
Wang, Yue
author_sort Gong, Ting
collection PubMed
description Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nICA) approach for transcriptional module discovery. nICA method utilizes the non-negativity constraint to enforce the independence of biological processes within the participated genes. In such, nICA decomposes the observed gene expression into positive independent components, which fits better to the reality of corresponding putative biological processes. In conjunction with nICA modeling, visual statistical data analyzer (VISDA) is applied to group genes into modules in latent variable space. We demonstrate the usefulness of the approach through the identification of composite modules from yeast data and the discovery of pathway modules in muscle regeneration.
format Text
id pubmed-2759148
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Libertas Academica
record_format MEDLINE/PubMed
spelling pubmed-27591482009-11-23 Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis Gong, Ting Xuan, Jianhua Wang, Chen Li, Huai Hoffman, Eric Clarke, Robert Wang, Yue Gene Regul Syst Bio Original Research Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nICA) approach for transcriptional module discovery. nICA method utilizes the non-negativity constraint to enforce the independence of biological processes within the participated genes. In such, nICA decomposes the observed gene expression into positive independent components, which fits better to the reality of corresponding putative biological processes. In conjunction with nICA modeling, visual statistical data analyzer (VISDA) is applied to group genes into modules in latent variable space. We demonstrate the usefulness of the approach through the identification of composite modules from yeast data and the discovery of pathway modules in muscle regeneration. Libertas Academica 2008-01-15 /pmc/articles/PMC2759148/ /pubmed/19936101 Text en © 2007 The authors. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Original Research
Gong, Ting
Xuan, Jianhua
Wang, Chen
Li, Huai
Hoffman, Eric
Clarke, Robert
Wang, Yue
Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
title Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
title_full Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
title_fullStr Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
title_full_unstemmed Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
title_short Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
title_sort gene module identification from microarray data using nonnegative independent component analysis
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759148/
https://www.ncbi.nlm.nih.gov/pubmed/19936101
work_keys_str_mv AT gongting genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis
AT xuanjianhua genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis
AT wangchen genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis
AT lihuai genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis
AT hoffmaneric genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis
AT clarkerobert genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis
AT wangyue genemoduleidentificationfrommicroarraydatausingnonnegativeindependentcomponentanalysis