Cargando…
Gene Module Identification from Microarray Data Using Nonnegative Independent Component Analysis
Genes mostly interact with each other to form transcriptional modules for performing single or multiple functions. It is important to unravel such transcriptional modules and to determine how disturbances in them may lead to disease. Here, we propose a non-negative independent component analysis (nI...
Autores principales: | Gong, Ting, Xuan, Jianhua, Wang, Chen, Li, Huai, Hoffman, Eric, Clarke, Robert, Wang, Yue |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759148/ https://www.ncbi.nlm.nih.gov/pubmed/19936101 |
Ejemplares similares
-
Motif-guided sparse decomposition of gene expression data for regulatory module identification
por: Gong, Ting, et al.
Publicado: (2011) -
Knowledge-guided multi-scale independent component analysis for biomarker identification
por: Chen, Li, et al.
Publicado: (2008) -
Linear Program Relaxation of Sparse Nonnegative Recovery in Compressive Sensing Microarrays
por: Qin, Linxia, et al.
Publicado: (2012) -
Knowledge-guided gene ranking by coordinative component analysis
por: Wang, Chen, et al.
Publicado: (2010) -
Nonnegative matrices
por: Minc, Henryk
Publicado: (1988)