Cargando…
Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography
BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generatio...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759518/ https://www.ncbi.nlm.nih.gov/pubmed/19838301 http://dx.doi.org/10.1371/journal.pone.0007507 |
_version_ | 1782172677162663936 |
---|---|
author | Fischer, M. Dominik Huber, Gesine Beck, Susanne C. Tanimoto, Naoyuki Muehlfriedel, Regine Fahl, Edda Grimm, Christian Wenzel, Andreas Remé, Charlotte E. van de Pavert, Serge A. Wijnholds, Jan Pacal, Marek Bremner, Rod Seeliger, Mathias W. |
author_facet | Fischer, M. Dominik Huber, Gesine Beck, Susanne C. Tanimoto, Naoyuki Muehlfriedel, Regine Fahl, Edda Grimm, Christian Wenzel, Andreas Remé, Charlotte E. van de Pavert, Serge A. Wijnholds, Jan Pacal, Marek Bremner, Rod Seeliger, Mathias W. |
author_sort | Fischer, M. Dominik |
collection | PubMed |
description | BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies. |
format | Text |
id | pubmed-2759518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27595182009-10-19 Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography Fischer, M. Dominik Huber, Gesine Beck, Susanne C. Tanimoto, Naoyuki Muehlfriedel, Regine Fahl, Edda Grimm, Christian Wenzel, Andreas Remé, Charlotte E. van de Pavert, Serge A. Wijnholds, Jan Pacal, Marek Bremner, Rod Seeliger, Mathias W. PLoS One Research Article BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies. Public Library of Science 2009-10-19 /pmc/articles/PMC2759518/ /pubmed/19838301 http://dx.doi.org/10.1371/journal.pone.0007507 Text en Fischer et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Fischer, M. Dominik Huber, Gesine Beck, Susanne C. Tanimoto, Naoyuki Muehlfriedel, Regine Fahl, Edda Grimm, Christian Wenzel, Andreas Remé, Charlotte E. van de Pavert, Serge A. Wijnholds, Jan Pacal, Marek Bremner, Rod Seeliger, Mathias W. Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography |
title | Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography |
title_full | Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography |
title_fullStr | Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography |
title_full_unstemmed | Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography |
title_short | Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography |
title_sort | noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759518/ https://www.ncbi.nlm.nih.gov/pubmed/19838301 http://dx.doi.org/10.1371/journal.pone.0007507 |
work_keys_str_mv | AT fischermdominik noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT hubergesine noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT becksusannec noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT tanimotonaoyuki noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT muehlfriedelregine noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT fahledda noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT grimmchristian noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT wenzelandreas noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT remecharlottee noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT vandepavertsergea noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT wijnholdsjan noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT pacalmarek noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT bremnerrod noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography AT seeligermathiasw noninvasiveinvivoassessmentofmouseretinalstructureusingopticalcoherencetomography |