Cargando…
FRED—a framework for T-cell epitope detection
Summary: Over the last decade, immunoinformatics has made significant progress. Computational approaches, in particular the prediction of T-cell epitopes using machine learning methods, are at the core of modern vaccine design. Large-scale analyses and the integration or comparison of different meth...
Autores principales: | Feldhahn, Magdalena, Dönnes, Pierre, Thiel, Philipp, Kohlbacher, Oliver |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759545/ https://www.ncbi.nlm.nih.gov/pubmed/19578173 http://dx.doi.org/10.1093/bioinformatics/btp409 |
Ejemplares similares
-
FRED 2: an immunoinformatics framework for Python
por: Schubert, Benjamin, et al.
Publicado: (2016) -
A Mathematical Framework for the Selection of an Optimal Set of
Peptides for Epitope-Based Vaccines
por: Toussaint, Nora C., et al.
Publicado: (2008) -
EpiToolKit—a web-based workbench for vaccine design
por: Schubert, Benjamin, et al.
Publicado: (2015) -
MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization
por: Blum, Torsten, et al.
Publicado: (2008) -
ClinVAP: a reporting strategy from variants to therapeutic options
por: Sürün, Bilge, et al.
Publicado: (2020)