Cargando…
A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates
BACKGROUND: Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes...
Autores principales: | Jacob, Benjamin G, Griffith, Daniel A, Muturi, Ephantus J, Caamano, Erick X, Githure, John I, Novak, Robert J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760564/ https://www.ncbi.nlm.nih.gov/pubmed/19772590 http://dx.doi.org/10.1186/1475-2875-8-216 |
Ejemplares similares
-
Survival of immature Anopheles arabiensis (Diptera: Culicidae) in aquatic habitats in Mwea rice irrigation scheme, central Kenya
por: Mwangangi, Joseph M, et al.
Publicado: (2006) -
A grid-based infrastructure for ecological forecasting of rice land Anopheles arabiensis aquatic larval habitats
por: Jacob, Benjamin G, et al.
Publicado: (2006) -
Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya
por: Jacob, Benjamin G, et al.
Publicado: (2007) -
Estimation of Autoregressive Parameters from Noisy Observations Using Iterated Covariance Updates
por: Moon, Todd K., et al.
Publicado: (2020) -
Estimation of temporal covariances in pathogen dynamics using Bayesian multivariate autoregressive models
por: Mair, Colette, et al.
Publicado: (2019)