Cargando…
Temporal-Difference Reinforcement Learning with Distributed Representations
Temporal-difference (TD) algorithms have been proposed as models of reinforcement learning (RL). We examine two issues of distributed representation in these TD algorithms: distributed representations of belief and distributed discounting factors. Distributed representation of belief allows the beli...
Autores principales: | Kurth-Nelson, Zeb, Redish, A. David |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760757/ https://www.ncbi.nlm.nih.gov/pubmed/19841749 http://dx.doi.org/10.1371/journal.pone.0007362 |
Ejemplares similares
-
Correction: Temporal-Difference Reinforcement Learning with Distributed Representations
por: Kurth-Nelson, Zeb, et al.
Publicado: (2009) -
A Reinforcement Learning Model of Precommitment in Decision Making
por: Kurth-Nelson, Zeb, et al.
Publicado: (2010) -
Don’t Let Me Do That! – Models of Precommitment
por: Kurth-Nelson, Zeb, et al.
Publicado: (2012) -
Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal Difference and Successor Representation
por: Salimibeni, Mohammad, et al.
Publicado: (2022) -
Expectancies in Decision Making, Reinforcement Learning, and Ventral Striatum
por: van der Meer, Matthijs A. A., et al.
Publicado: (2010)