Cargando…
Deep Sequencing of the Small RNAs Derived from Two Symptomatic Variants of a Chloroplastic Viroid: Implications for Their Genesis and for Pathogenesis
Northern-blot hybridization and low-scale sequencing have revealed that plants infected by viroids, non-protein-coding RNA replicons, accumulate 21–24 nt viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs, the hallmarks of RNA silencing. These results strongly support that vi...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760764/ https://www.ncbi.nlm.nih.gov/pubmed/19847296 http://dx.doi.org/10.1371/journal.pone.0007539 |
Sumario: | Northern-blot hybridization and low-scale sequencing have revealed that plants infected by viroids, non-protein-coding RNA replicons, accumulate 21–24 nt viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs, the hallmarks of RNA silencing. These results strongly support that viroids are elicitors and targets of the RNA silencing machinery of their hosts. Low-scale sequencing, however, retrieves partial datasets and may lead to biased interpretations. To overcome this restraint we have examined by deep sequencing (Solexa-Illumina) and computational approaches the vd-sRNAs accumulating in GF-305 peach seedlings infected by two molecular variants of Peach latent mosaic viroid (PLMVd) inciting peach calico (albinism) and peach mosaic. Our results show in both samples multiple PLMVd-sRNAs, with prevalent 21-nt (+) and (−) RNAs presenting a biased distribution of their 5′ nucleotide, and adopting a hotspot profile along the genomic (+) and (−) RNAs. Dicer-like 4 and 2 (DCL4 and DCL2, respectively), which act hierarchically in antiviral defense, likely also mediate the genesis of the 21- and 22-nt PLMVd-sRNAs. More specifically, because PLMVd replicates in plastids wherein RNA silencing has not been reported, DCL4 and DCL2 should dice the PLMVd genomic RNAs during their cytoplasmic movement or the PLMVd-dsRNAs generated by a cytoplasmic RNA-dependent RNA polymerase (RDR), like RDR6, acting in concert with DCL4 processing. Furthermore, given that vd-sRNAs derived from the 12–14-nt insertion containing the pathogenicity determinant of peach calico are underrepresented, it is unlikely that symptoms may result from the accidental targeting of host mRNAs by vd-sRNAs from this determinant guiding the RNA silencing machinery. |
---|