Cargando…
Comparing Artificial Neural Networks, General Linear Models and Support Vector Machines in Building Predictive Models for Small Interfering RNAs
BACKGROUND: Exogenous short interfering RNAs (siRNAs) induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature sets have been app...
Autores principales: | McQuisten, Kyle A., Peek, Andrew S. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760777/ https://www.ncbi.nlm.nih.gov/pubmed/19847297 http://dx.doi.org/10.1371/journal.pone.0007522 |
Ejemplares similares
-
Identification of sequence motifs significantly associated with antisense activity
por: McQuisten, Kyle A, et al.
Publicado: (2007) -
Evaluation Models for Soil Nutrient Based on Support Vector Machine and Artificial Neural Networks
por: Li, Hao, et al.
Publicado: (2014) -
Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network
por: Sadiq Fareed, Mian Muhammad, et al.
Publicado: (2022) -
Interpreting linear support vector machine models with heat map molecule coloring
por: Rosenbaum, Lars, et al.
Publicado: (2011) -
Vector generalized linear and additive models: with an implementation in R
por: Yee, Thomas W
Publicado: (2015)