Cargando…
Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?
BACKGROUND: High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented data sets, one hopes to improve tumor diagnosis, pro...
Autores principales: | Yasrebi, Haleh, Sperisen, Peter, Praz, Viviane, Bucher, Philipp |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761544/ https://www.ncbi.nlm.nih.gov/pubmed/19851466 http://dx.doi.org/10.1371/journal.pone.0007431 |
Ejemplares similares
-
CleanEx: new data extraction and merging tools based on MeSH term annotation
por: Praz, Viviane, et al.
Publicado: (2009) -
Comparative study of joint analysis of microarray gene expression data in
survival prediction and risk assessment of breast cancer patients
por: Yasrebi, Haleh
Publicado: (2016) -
Splicy: a web-based tool for the prediction of possible alternative splicing events from Affymetrix probeset data
por: Rambaldi, Davide, et al.
Publicado: (2007) -
Methods for merging data sets in electron cryo-microscopy
por: Wilkinson, Max E., et al.
Publicado: (2019) -
EPD in its twentieth year: towards complete promoter coverage of selected model organisms
por: Schmid, Christoph D., et al.
Publicado: (2006)