Cargando…
Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis
BACKGROUND: Several studies have implicated viral infection as an important factor in the pathogenesis of IPF and related fibrotic lung disorders. Viruses are thought to cause epithelial cell injury and promote epithelial-mesenchymal transition (EMT), a process whereby differentiated epithelial cell...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761603/ https://www.ncbi.nlm.nih.gov/pubmed/19851501 http://dx.doi.org/10.1371/journal.pone.0007559 |
_version_ | 1782172842432921600 |
---|---|
author | Pozharskaya, Veronika Torres-González, Edilson Rojas, Mauricio Gal, Anthony Amin, Minal Dollard, Sheila Roman, Jesse Stecenko, Arlene A. Mora, Ana L. |
author_facet | Pozharskaya, Veronika Torres-González, Edilson Rojas, Mauricio Gal, Anthony Amin, Minal Dollard, Sheila Roman, Jesse Stecenko, Arlene A. Mora, Ana L. |
author_sort | Pozharskaya, Veronika |
collection | PubMed |
description | BACKGROUND: Several studies have implicated viral infection as an important factor in the pathogenesis of IPF and related fibrotic lung disorders. Viruses are thought to cause epithelial cell injury and promote epithelial-mesenchymal transition (EMT), a process whereby differentiated epithelial cells undergo transition to a mesenchymal phenotype, and considered a source of fibroblasts in the setting of lung injury. We have demonstrated an association between the epithelial injury caused by chronic herpes virus infection with the murine γ-herpes virus, MHV68, and lung fibrosis. We hypothesize that EMT in this model of virus-induced pulmonary fibrosis is driven by the expression of the transcription factor Twist. METHODS/FINDINGS: In vitro MHV68 infection of murine lung epithelial cells induced expression of Twist, and mesenchymal markers. Stable overexpression of Twist promoted EMT in MLE15 lung epithelial cells. Transient knockdown expression of Twist resulted in preservation of epithelial phenotype after in vitro MHV68 infection. In concordance, high expression of Twist was found in lung epithelial cells of MHV68 infected mice, but not in mock infected mice. Alveolar epithelial cells from lung tissue of idiopathic pulmonary fibrosis (IPF) patients were strongly positive for Twist. These cells demonstrated features of EMT with low expression of E-cadherin and upregulation of the mesenchymal marker N-cadherin. Finally, IPF tissue with high Twist protein levels was also positive for the herpesvirus, EBV. CONCLUSIONS/SIGNIFICANCE: We conclude that Twist contributes to EMT in the model of virus-induced pulmonary fibrosis. We speculate that in some IPF cases, γ-herpes virus infection with EBV might be a source of injury precipitating EMT through the expression of Twist. |
format | Text |
id | pubmed-2761603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27616032009-10-23 Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis Pozharskaya, Veronika Torres-González, Edilson Rojas, Mauricio Gal, Anthony Amin, Minal Dollard, Sheila Roman, Jesse Stecenko, Arlene A. Mora, Ana L. PLoS One Research Article BACKGROUND: Several studies have implicated viral infection as an important factor in the pathogenesis of IPF and related fibrotic lung disorders. Viruses are thought to cause epithelial cell injury and promote epithelial-mesenchymal transition (EMT), a process whereby differentiated epithelial cells undergo transition to a mesenchymal phenotype, and considered a source of fibroblasts in the setting of lung injury. We have demonstrated an association between the epithelial injury caused by chronic herpes virus infection with the murine γ-herpes virus, MHV68, and lung fibrosis. We hypothesize that EMT in this model of virus-induced pulmonary fibrosis is driven by the expression of the transcription factor Twist. METHODS/FINDINGS: In vitro MHV68 infection of murine lung epithelial cells induced expression of Twist, and mesenchymal markers. Stable overexpression of Twist promoted EMT in MLE15 lung epithelial cells. Transient knockdown expression of Twist resulted in preservation of epithelial phenotype after in vitro MHV68 infection. In concordance, high expression of Twist was found in lung epithelial cells of MHV68 infected mice, but not in mock infected mice. Alveolar epithelial cells from lung tissue of idiopathic pulmonary fibrosis (IPF) patients were strongly positive for Twist. These cells demonstrated features of EMT with low expression of E-cadherin and upregulation of the mesenchymal marker N-cadherin. Finally, IPF tissue with high Twist protein levels was also positive for the herpesvirus, EBV. CONCLUSIONS/SIGNIFICANCE: We conclude that Twist contributes to EMT in the model of virus-induced pulmonary fibrosis. We speculate that in some IPF cases, γ-herpes virus infection with EBV might be a source of injury precipitating EMT through the expression of Twist. Public Library of Science 2009-10-23 /pmc/articles/PMC2761603/ /pubmed/19851501 http://dx.doi.org/10.1371/journal.pone.0007559 Text en This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Pozharskaya, Veronika Torres-González, Edilson Rojas, Mauricio Gal, Anthony Amin, Minal Dollard, Sheila Roman, Jesse Stecenko, Arlene A. Mora, Ana L. Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis |
title | Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis |
title_full | Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis |
title_fullStr | Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis |
title_full_unstemmed | Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis |
title_short | Twist: A Regulator of Epithelial-Mesenchymal Transition in Lung Fibrosis |
title_sort | twist: a regulator of epithelial-mesenchymal transition in lung fibrosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761603/ https://www.ncbi.nlm.nih.gov/pubmed/19851501 http://dx.doi.org/10.1371/journal.pone.0007559 |
work_keys_str_mv | AT pozharskayaveronika twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT torresgonzalezedilson twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT rojasmauricio twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT galanthony twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT aminminal twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT dollardsheila twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT romanjesse twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT stecenkoarlenea twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis AT moraanal twistaregulatorofepithelialmesenchymaltransitioninlungfibrosis |