Cargando…
Exploratory and inferential analysis of gene cluster neighborhood graphs
BACKGROUND: Many different cluster methods are frequently used in gene expression data analysis to find groups of co-expressed genes. However, cluster algorithms with the ability to visualize the resulting clusters are usually preferred. The visualization of gene clusters gives practitioners an unde...
Autores principales: | Scharl, Theresa, Voglhuber, Ingo, Leisch, Friedrich |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761902/ https://www.ncbi.nlm.nih.gov/pubmed/19751523 http://dx.doi.org/10.1186/1471-2105-10-288 |
Ejemplares similares
-
Interactive visualization of clusters in microarray data: an efficient tool for improved metabolic analysis of E. coli
por: Scharl, Theresa, et al.
Publicado: (2009) -
Modelling time course gene expression data with finite mixtures of linear additive models
por: Grün, Bettina, et al.
Publicado: (2012) -
An inferential framework for biological network hypothesis tests
por: Yates, Phillip D, et al.
Publicado: (2013) -
Clustering gene expression data with a penalized graph-based metric
por: Bayá, Ariel E, et al.
Publicado: (2011) -
Soft document clustering using a novel graph covering approach
por: Dörpinghaus, Jens, et al.
Publicado: (2018)