Cargando…
Heritable T Cell Malignancy Models Established in a Zebrafish Phenotypic Screen
T cell neoplasias are common in pediatric oncology, and include acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LBL). These cancers have worse prognoses than their B cell counterparts, and their treatments carry significant morbidity. While many pediatric malignancies have charact...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761994/ https://www.ncbi.nlm.nih.gov/pubmed/19516274 http://dx.doi.org/10.1038/leu.2009.116 |
Sumario: | T cell neoplasias are common in pediatric oncology, and include acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LBL). These cancers have worse prognoses than their B cell counterparts, and their treatments carry significant morbidity. While many pediatric malignancies have characteristic translocations, most T lymphocyte-derived diseases lack cytogenetic hallmarks. Lacking these informative lesions, insight into their molecular pathogenesis is less complete. Although dysregulation of the NOTCH1 pathway occurs in a substantial fraction of cases, many other genetic lesions of T cell malignancy have not yet been determined. To address this deficiency, we pioneered a phenotype-driven forward-genetic screen in zebrafish (Danio rerio). Using transgenic fish with T lymphocyte-specific expression of enhanced green fluorescent protein (EGFP), we performed chemical mutagenesis, screened animals for GFP(+) tumors, and identified multiple lines with a heritable predisposition to T cell malignancy. In each line, patterns of infiltration and morphologic appearance resembled human T-ALL and T-LBL. T cell receptor analyses confirmed their clonality. Malignancies were transplantable and contained leukemia-initiating cells (LIC), like their human correlates. In summary, we have identified multiple zebrafish mutants that recapitulate human T cell neoplasia and show heritable transmission. These vertebrate models provide new genetic platforms for the study of these important human cancers. |
---|