Cargando…

The Human EST Ontology Explorer: a tissue-oriented visualization system for ontologies distribution in human EST collections

BACKGROUND: The NCBI dbEST currently contains more than eight million human Expressed Sequenced Tags (ESTs). This wide collection represents an important source of information for gene expression studies, provided it can be inspected according to biologically relevant criteria. EST data can be brows...

Descripción completa

Detalles Bibliográficos
Autores principales: Merelli, Ivan, Caprera, Andrea, Stella, Alessandra, Del Corvo, Marcello, Milanesi, Luciano, Lazzari, Barbara
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762067/
https://www.ncbi.nlm.nih.gov/pubmed/19828078
http://dx.doi.org/10.1186/1471-2105-10-S12-S2
Descripción
Sumario:BACKGROUND: The NCBI dbEST currently contains more than eight million human Expressed Sequenced Tags (ESTs). This wide collection represents an important source of information for gene expression studies, provided it can be inspected according to biologically relevant criteria. EST data can be browsed using different dedicated web resources, which allow to investigate library specific gene expression levels and to make comparisons among libraries, highlighting significant differences in gene expression. Nonetheless, no tool is available to examine distributions of quantitative EST collections in Gene Ontology (GO) categories, nor to retrieve information concerning library-dependent EST involvement in metabolic pathways. In this work we present the Human EST Ontology Explorer (HEOE) , a web facility for comparison of expression levels among libraries from several healthy and diseased tissues. RESULTS: The HEOE provides library-dependent statistics on the distribution of sequences in the GO Direct Acyclic Graph (DAG) that can be browsed at each GO hierarchical level. The tool is based on large-scale BLAST annotation of EST sequences. Due to the huge number of input sequences, this BLAST analysis was performed with the aid of grid computing technology, which is particularly suitable to address data parallel task. Relying on the achieved annotation, library-specific distributions of ESTs in the GO Graph were inferred. A pathway-based search interface was also implemented, for a quick evaluation of the representation of libraries in metabolic pathways. EST processing steps were integrated in a semi-automatic procedure that relies on Perl scripts and stores results in a MySQL database. A PHP-based web interface offers the possibility to simultaneously visualize, retrieve and compare data from the different libraries. Statistically significant differences in GO categories among user selected libraries can also be computed. CONCLUSION: The HEOE provides an alternative and complementary way to inspect EST expression levels with respect to approaches currently offered by other resources. Furthermore, BLAST computation on the whole human EST dataset was a suitable test of grid scalability in the context of large-scale bioinformatics analysis. The HEOE currently comprises sequence analysis from 70 non-normalized libraries, representing a comprehensive overview on healthy and unhealthy tissues. As the analysis procedure can be easily applied to other libraries, the number of represented tissues is intended to increase.