Cargando…

Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3

The tetraheme c-type cytochrome, CymA, is essential for arsenate respiratory reduction in Shewanella sp. ANA-3, a model arsenate reducer. CymA is predicted to mediate electron transfer from quinols to the arsenate respiratory reductase (ArrAB). Here, we present biochemical and physiological evidence...

Descripción completa

Detalles Bibliográficos
Autores principales: Zargar, Kamrun, Saltikov, Chad W.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762525/
https://www.ncbi.nlm.nih.gov/pubmed/19760266
http://dx.doi.org/10.1007/s00203-009-0511-x
Descripción
Sumario:The tetraheme c-type cytochrome, CymA, is essential for arsenate respiratory reduction in Shewanella sp. ANA-3, a model arsenate reducer. CymA is predicted to mediate electron transfer from quinols to the arsenate respiratory reductase (ArrAB). Here, we present biochemical and physiological evidence that CymA interacts with menaquinol (MQH(2)) substrates. Fluorescence quench titration with the MQH(2) analog, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), was used to demonstrate quinol binding of E. coli cytoplasmic membranes enriched with various forms of CymA. Wild-type CymA bound HOQNO with a K (d) of 0.1–1 μM. It was also shown that the redox active MQH(2) analog, 2,3-dimethoxy-1,4-naphthoquinone (DMNH(2)), could reduce CymA in cytoplasmic membrane preparations. Based on a CymA homology model made from the NrfH tetraheme cytochrome structure, it was predicted that Lys91 would be involved in CymA-quinol interactions. CymA with a K91Q substitution showed little interaction with HOQNO. In addition, DMNH(2)-dependent reduction of CymA-K91Q was diminished by 45% compared to wild-type CymA. A ΔcymA ANA-3 strain containing a plasmid copy of cymA-K91Q failed to grow with arsenate as an electron acceptor. These results suggest that Lys91 is physiologically important for arsenate respiration and support the hypothesis that CymA interacts with menaquinol resulting in the reduction of the cytochrome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00203-009-0511-x) contains supplementary material, which is available to authorized users.