Cargando…

Odontoid fractures: A retrospective analysis of 53 cases

BACKGROUND: The management of odontoid fracture has evolved but controversy persists as to the best method for Type II odontoid fractures with or without atlantoaxial (AA) instability. The anterior odontoid screw fixation can be associated with significant morbidity while delayed odontoid screw fixa...

Descripción completa

Detalles Bibliográficos
Autores principales: Shetty, Arjun, Kini, Abhishek R, Prabhu, Jagadish
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762572/
https://www.ncbi.nlm.nih.gov/pubmed/19838385
http://dx.doi.org/10.4103/0019-5413.55975
Descripción
Sumario:BACKGROUND: The management of odontoid fracture has evolved but controversy persists as to the best method for Type II odontoid fractures with or without atlantoaxial (AA) instability. The anterior odontoid screw fixation can be associated with significant morbidity while delayed odontoid screw fixation has shown to be associated with reasonable good fusion rates. We conducted a retrospective analysis to evaluate the outcome of a trial of conservative management in type II odontoid fractures without atlantoaxial instability (Group A) followed by delayed odontoid screw fixation in cases in which fusion was not achieved by conservative treatment. The outcome of type II odontoid fracture with AA subluxation (Group B) was also analysed where closed reduction on traction could be achieved and in those atlantoaxial subluxations that were irreducible an intraoperative reduction was done. MATERIALS AND METHODS: A retrospective evaluation of 53 cases of odontoid fractures treated over a 9-year period is being reported. All odontoid fractures without AA instability (n=29) were initially managed conservatively. Three patients who did not achieve union with conservative management were treated with delayed anterior screw fixation. Twenty-four cases of odontoid fractures were associated with AA instability; 17 of them could be reduced with skeletal traction and were managed with posterior fusion and fixation. Of the seven cases that were irreducible, the initial three cases were treated by odontoid excision followed by posterior fusion and fixation; however, in the later four cases, intra operative reduction was achieved by a manipulation procedure, and posterior fusion and fixation was performed. RESULTS: Twenty-six of 29 cases of odontoid fracture without AA instability achieved fracture union with conservative management whereas the remaining three patients achieved union following delayed anterior odontoid screw fixation. 17 out of 24 odontoid fracture with atlantoaxial dislocation could be reduced on traction and these patients underwent posterior fusion and fixation. Optimal or near optimal reduction was achieved by on table manipulation in four cases which were irreducible with skeletal traction. Atlantoaxial stability was achieved in all cases. All cases were noted to be stable on evaluation with x-rays at six months. CONCLUSIONS: The initial conservative management and use of odontoid screw fixation only in cases where conservative management for 6–12 weeks has failed to provide fracture union have shown good outcome in type II odontoid fracture without AA instability rates. Intraoperative manipulation and reduction in patients where AA subluxation failed to reduce on skeletal traction followed by posterior fusion obviates the need for transoral odontoid excision.